主办单位:中国气象局沈阳大气环境研究所
国际刊号:ISSN 1673-503X
国内刊号:CN 21-1531/P

气象与环境学报 ›› 2022, Vol. 38 ›› Issue (3): 1-10.doi: 10.3969/j.issn.1673-503X.2022.03.001

• 论文 • 上一篇    下一篇

2019年7月3日辽宁开原伴随EF4级强龙卷的超级单体风暴分析

耿世波1,2(),才奎志2,*(),王瀛2,周福然3,肖光梁2,黄海亮2,柴晓玲4   

  1. 1. 中国气象局沈阳大气环境研究所, 辽宁 沈阳 110166
    2. 辽宁省气象灾害监测预警中心, 辽宁 沈阳 110166
    3. 锦州市气象台, 辽宁 锦州 121000
    4. 沈阳市气象台, 辽宁 沈阳 100168
  • 收稿日期:2021-07-06 出版日期:2022-06-28 发布日期:2022-07-23
  • 通讯作者: 才奎志 E-mail:gengshibo2015@163.com;59595455@qq.com
  • 作者简介:耿世波, 男, 1984年生, 工程师, 主要从事灾害性天气预报预警技术方法研究, E-mail: gengshibo2015@163.com
  • 基金资助:
    中国气象局沈阳大气环境研究所联合开放基金课题资助项目(SYIAEKFZD01);中国气象局沈阳大气环境研究所联合开放基金课题资助项目(2016SYIAE01);中国气象局沈阳大气环境研究所联合开放基金课题资助项目(2021SYIAEKFMS15);中国气象局创新发展专项(CXFZCXFZ2022J003)

Observational analysis of EF4 tornadic supercell storm in Kaiyuan of Liaoning province on July 3, 2019

Shi-bo GENG1,2(),Kui-zhi CAI2,*(),Ying WANG2,Fu-ran ZHOU3,Guang-liang XIAO2,Hai-liang HUANG2,Xiao-ling CHAI4   

  1. 1. Institute of Atmosphere Environment, China Meteorological Administration, Shenyang 110166, China
    2. Liaoning Meteorological Disaster Monitoring and Early Warning Center, Shenyang 110166, China
    3. Jinzhou Meteorological Observatory, Jinzhou 121000, China
    4. Shenyang Meteorological Observatory, Shenyang 100168, China
  • Received:2021-07-06 Online:2022-06-28 Published:2022-07-23
  • Contact: Kui-zhi CAI E-mail:gengshibo2015@163.com;59595455@qq.com

摘要:

综合利用多普勒雷达、地面自动气象站以及风廓线等观测资料和ERA5再分析资料, 对2019年7月3日发生于辽宁开原的超级单体风暴伴随EF4级强龙卷环境条件、多普勒雷达回波特征和形成机理进行详细分析。结果表明: 本次过程发生于低层暖湿高层冷干强的热力不稳定环境条件下, 在地面干线汇合流场形成地面辐合线附近触发湿对流并发展为伴有龙卷的超级单体风暴。龙卷发生于低层钩状回波附近, 多普勒雷达上呈现经典超级单体风暴雷达回波特征, 低层强的垂直风切变将水平涡度转化为对流风暴中垂直涡度, 强上升运动使得顺流涡度倾斜拉伸, 从而龙卷发生前17 min在多普勒雷达2.4 °仰角首先出现中气旋结构, 随后风暴向南移动过程中, 风暴的后侧下沉气流(RFD)将中低层的涡度“压低”致使龙卷接地, 因此龙卷发生后1 min在0.5 °仰角也出现强中气旋并有类龙卷涡旋特征(TVS), 中气旋最强时的旋转速度达到28 m·s-1(强中气旋标准), 因此本次龙卷符合“自上而下”I型龙卷特征。由于环境干燥空气夹卷造成水滴强烈蒸发和冷却, 使得地面出现了1 h降温达10 ℃的强冷池, 过强的冷池可能在促使龙卷消亡过程中起到关键作用, 致使龙卷持续了约30 min后消亡。

关键词: 超级单体, 龙卷, 多普勒雷达回波, 中气旋, 涡度

Abstract:

Based on the observational data from Doppler radar, ground automatic weather station, wind profile, and ERA5 reanalysis data, the environmental conditions, Doppler radar echo characteristics, and formation mechanism of super monomer storm accompanied by EF4 strong tornado occurred in Kaiyuan of Liaoning province on July 3, 2019 were analyzed.The results indicated that this process occurs under thermal instability, warm wet in the lower layer, and cold and dry in the upper layer.The wet convection is triggered near the ground convergence line formed by the confluence flow field of the ground trunk line and develops into a supercell storm with a tornado.The tornado occurs near the hook echo in the lower layer.The Doppler radar shows the echo characteristics of the classic supercell storm.The strong wind shear in the lower layer converts the horizontal vorticity into the vertical vorticity in the convective storm.The strong upward movement makes the downstream vorticity tilt and stretch.Therefore, the mesocyclone structure appears for the first time when the Doppler radar is at an elevation of 2.4°, i.e., 17 minutes before the tornado.Then, during the movement of the storm, the downdraft behind the storm (RFD) "depresses" the vorticity in the middle and low layers, resulting in the tornado reaching the ground.Therefore, one minute after the tornado, there is also a strong mesocyclone at an elevation of 0.5° with characteristics of tornado-like vortexes (TVS).The maximum rotation speed of the mesocyclone reaches 28 m·s-1 (reaching the strong meso-cyclone standard).Therefore, this tornado conforms to the characteristics of a "top-down" type I tornado.Due to the strong evaporation and cooling of water droplets caused by the entrainment of ambient dry air, a strong cold pool with a temperature drop of 10 ℃ in one hour appears on the ground.An excessively strong cold pool may play a key role in promoting the demise of the tornado, resulting in the demise of the tornado after about 30 minutes.

Key words: Super monomer, Tornado, Supercell, Mesocyclone, Vorticity

中图分类号: