1 |
Chernokulsky A , Kozlov F , Zolina O , et al. Observed changes in convective and stratiform precipitation in northern Eurasia over the last five decades[J]. Environmental Research Letters, 2019, 14 (4): 045001.
doi: 10.1088/1748-9326/aafb82
|
2 |
Fu X F , Lin Y H , Liu G S , et al. Seasonal characteristics of precipitation in 1998 over East Asia as derived from TRMM PR[J]. Advances in Atmospheric Sciences, 2003, 20 (4): 511- 529.
doi: 10.1007/BF02915495
|
3 |
Marzano F S , Mori S , Weinman J A . Evidence of rainfall signatures on X-band synthetic aperture radar imagery over land[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48 (2): 950- 964.
doi: 10.1109/TGRS.2009.2034843
|
4 |
Fritz J P , Chandrasekar V . A fully polarimetric characterization of the impact of precipitation on short wavelength synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50 (5): 2037- 2048.
doi: 10.1109/TGRS.2011.2170576
|
5 |
Marzano F S, Weinman J A, Mugnai A, et al. Rain retrieval over land from X-band spaceborne synthetic aperture radar: a model study[C]//Proceeding of the Fourth European Conference on Radar Meteorology and Hydrology. Rome, Italy, 2006: 18-21.
|
6 |
Marzano F S , Weinman J A . Inversion of spaceborne X-band synthetic aperture radar measurements for precipitation remote sensing over land[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46 (11): 3472- 3487.
doi: 10.1109/TGRS.2008.922317
|
7 |
Polverari F, Marzano F S, Pulvirenti L, et al. Modeling Ocean wave surface to simulate spaceborne scatterometer observations in presence of rain[C]//Proceedings of 2015 IEEE International Geoscience and Remote Sensing Symposium. Milan, Italy: IEEE, 2015: 1203-1206.
|
8 |
Luo T , Xie Y N , Wang R , et al. An analytic solution to precipitation attenuation expression with spaceborne synthetic aperture radar based on Volterra integral equation[J]. Remote Sensing, 2020, 14 (2): 357.
|
9 |
Mori S, Polverari F, Pulvirenti L, et al. High-resolution spatial analysis of a hurricane structure by means of X-band and Ka-band satellite synthetic aperture radar[C]//Proceedings of the Eighth European Conference on Radar in Meteorology and Hydrology. Garmisch-Partenkirchen, Germany, 2014: 1-5.
|
10 |
Mori S, Marzano F S, Pierdicca N. X-band synthetic aperture radar methods[M]//Levizzani V, Kidd C, Kirschbaum D B, et al. Satellite Precipitation Measurement. Cham: Springer, 2020: 315-339.
|
11 |
张晋广, 赵姝慧, 刘旸, 等. 一次东北冷涡云降水垂直结构特征分析[J]. 气象与环境学报, 2021, 37 (4): 1- 8.
|
12 |
申莉莉, 李江波, 王秀明, 等. 京津冀暖季短时强降水环境特征对比分析[J]. 气象与环境学报, 2024, 40 (1): 37- 46.
|
13 |
张培昌. 雷达气象学[M]. 北京: 气象出版社, 1988: 14- 15.
|
14 |
Liu G S , Fu Y F . The characteristics of tropical precipitation profiles as inferred from satellite radar measurements[J]. Journal of the Meteorological Society of Japan.Ser.Ⅱ, 2001, 79 (1): 131- 143.
doi: 10.2151/jmsj.79.131
|
15 |
Weinman J A , Marzano F S . An exploratory study to derive precipitation over land from X-band synthetic aperture radar measurements[J]. Journal of Applied Meteorology and Climatology, 2008, 47 (2): 562- 575.
doi: 10.1175/2007JAMC1663.1
|
16 |
Oh Y , Sarabandi K , Ulaby F T . An empirical model and an inversion technique for radar scattering from bare soil surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30 (2): 370- 381.
doi: 10.1109/36.134086
|