主办单位:中国气象局沈阳大气环境研究所
国际刊号:ISSN 1673-503X
国内刊号:CN 21-1531/P

气象与环境学报 ›› 2014, Vol. 30 ›› Issue (5): 49-56.doi:

• 论文 • 上一篇    下一篇

上对流层/下平流层水物质分布与输送特征

张岱乐1,2 卞建春1 杨军2   

  1. 1. 南京信息工程大学大气物理学院,江苏 南京210044;2. 中国科学院大气物理研究所中层大气和全球环境探测重点实验室,北京100029
  • 出版日期:2014-11-01 发布日期:2014-11-01

Water vapor distribution and transport characteristics in boundary of upper troposphere and lower stratosphere

ZHANG Dai-le1,2 BIAN Jian-chun1 YANG Jun2   

  1. 1. School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2. Key Laboratory of Middle Atmosphere and Global
  • Online:2014-11-01 Published:2014-11-01

摘要:

基于Aura卫星微波临边探测仪(MLS)探测的水汽、冰水含量和温度等资料,对比分析了夏季亚洲季风区与北美季风区、暖池区以及伊朗高原上对流层/下平流层水汽、冰水含量以及水物质总含量(水汽和冰水含量之和)的分布特征,并探讨了不同区域水汽的输送过程。结果表明:在215—83 hPa高度上水物质总含量在亚洲季风区均出现了高值中心,且亚洲季风区水物质总含量明显大于北美季风区;在215 hPa高度水汽对水物质总含量起主要的贡献,而到了147—83 hPa高度,冰水含量与水汽对水物质总含量的贡献大致相当,亚洲季风区上对流层/下平流层水汽的高值中心揭示了反气旋对水汽的隔离作用。水汽混合比在147 hPa和100 hPa高度不同的概率密度分布反映出不同高度影响水汽输送的不同因素。北半球冬季暖池区100 hPa上空温度极低,水汽混合比峰值概率仅为2 ppmv;而在147 hPa高度上,亚洲季风区频繁的深对流使得大量水汽被输送到对流层上层,这是亚洲季风区水汽概率“长尾”分布的主要原因。在100 hPa和147 hPa高度,冰水含量主要集中在小值,可能是由冰晶粒子消耗水汽而增长到一定尺度后沉降造成的。

关键词: 水汽, 冰水含量, 上对流层/下平流层, 脱水机制

Abstract:

Based on water vapor, ice water content (IWC), and temperature data from Microwave Limb Sounder (MLS) of Aura satellite, distribution characteristics of water vapor, IWC and total water matter (sum of water vapor and IWC by reconciling the unit of ice water content to the unit of water vapor) contents in the boundary of upper troposphere and lower stratosphere (UTLS) in the Asian Summer Monsoon (ASM) region, North American Monsoon (NAM) region, Warm Pool and Iran Plateau region were analyzed. Water vapor transport and main dehydration mechanisms over the boundary of UTLS were discussed. The results show that the total water matter contents in the ASM region have large value centers between 215 hPa to 83 hPa levels and are larger than that in the NAM region. At 215 hPa level, water vapor contributes more to the total water matter contents, while IWC and water vapor have the same contribution to the total water matter contents between 147 hPa to 83 hPa levels. The confinement effect of ASM anticyclone can restrict water vapor transported by deep convections in the upper troposphere. Probability distributions of water vapor and ice water content at 147 hPa and 100 hPa levels can demonstrate different dehydration mechanisms. Due to the extreme low temperature around warm pool at 100 hPa in winter of the northern hemisphere, the peak probability of water vapor mixing ratio over that region is only 2 ppmv. The “long-tail” distribution of water vapor probability in the ASM region at 147 hPa displays a strong convective influence. IWC mainly concentrates on small values at 147 hPa and 100 hPa, which is probably caused by ice particles sedimentation with ice growth by depleting water vapor.

Key words: Water vapor, Ice water content, Upper troposphere and lower stratosphere, Dehydration mechanism