1 |
Shan Y L , Guan D B , Hubacek K , et al. City-level climate change mitigation in China[J]. Science Advances, 2018, 4 (6): eaaq0390.
doi: 10.1126/sciadv.aaq0390
|
2 |
赵俊刚, 董鑫, 尹名强, 等. 基于碳中和及气候适应性原则的被动式建筑应用潜力研究——以重庆市为例[J]. 气象与环境学报, 2022, 38 (5): 1- 14.
|
3 |
Hoekstra R , Jeroen C J. M . Comparing structural decomposition analysis and index[J]. Energy Economics, 2003, 25 (1): 39- 64.
doi: 10.1016/S0140-9883(02)00059-2
|
4 |
Ang B W . Decomposition analysis for policymaking in energy: which is the preferred method?[J]. Energy Policy, 2004, 32 (9): 1131- 1139.
doi: 10.1016/S0301-4215(03)00076-4
|
5 |
李小冬, 朱辰. 我国建筑碳排放核算及影响因素研究综述[J]. 安全与环境学报, 2020, 20 (1): 317- 327.
|
6 |
Ye B , Jiang J J , Li C S , et al. Quantification and driving force analysis of provincial-level carbon emissions in China[J]. Applied Energy, 2017, 198, 223- 238.
doi: 10.1016/j.apenergy.2017.04.063
|
7 |
Akpan U , Bhattacharyya S C , Isihak S R , et al. Effect of technology change on CO2 emissions in Japan's industrial sectors in the period 1995-2005:an input-o utput structural decomposition analysis[J]. Environmental and Resource Economics, 2015, 61 (2): 165- 189.
doi: 10.1007/s10640-014-9787-7
|
8 |
Wang R , Zheng X , Wang H , et al. Emission drivers of cities at different industrialization phases in China[J]. Journal of Environmental Management, 2019, 250, 109494.
doi: 10.1016/j.jenvman.2019.109494
|
9 |
郑颖, 逯非, 刘晶茹, 等. 我国典型城市化石能源消费CO2排放及其影响因素比较研究[J]. 生态学报, 2020, 40 (10): 3315- 3327.
|
10 |
钟宇峰, 牛涛, 贾文贤, 等. 阅海湿地芦苇NPP遥感估算及其时空变化分析[J]. 气象与环境学报, 2021, 37 (6): 71- 78.
doi: 10.3969/j.issn.1673-503X.2021.06.009
|
11 |
冯锐, 纪瑞鹏, 武晋雯, 等. 基于FY3/MERSI数据的辽宁省植被指数重建及时空变化分析[J]. 气象与环境学报, 2022, 38 (1): 65- 73.
|
12 |
李雨鸿, 陶苏林, 李荣平, 等. 辽宁省净初级生产力时空演变及其对地形因子的响应[J]. 气象与环境学报, 2021, 37 (5): 107- 112.
doi: 10.3969/j.issn.1673-503X.2021.05.016
|
13 |
Li J F , Wang F F , Fu Y C , et al. A novel SUHI referenced estimation method for multicenters urban agglomeration using DMSP/OLS nighttime light data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 1416- 1425.
doi: 10.1109/JSTARS.2020.2981285
|
14 |
York R , Rosa E A , Dietz T . IPAT and Impact: analytic tools for unpacking the driving forces of environmental impacts[J]. Ecological Economics, 2003, 46 (3): 351- 365.
doi: 10.1016/S0921-8009(03)00188-5
|
15 |
唐赛, 付杰文, 武俊丽. 中国典型城市碳排放影响因素分析[J]. 统计与决策, 2021, 37 (23): 59- 63.
|
16 |
申笑颜. 中国碳排放影响因素的分析与预测[J]. 统计与决策, 2010, 26 (19): 90- 92.
|
17 |
赵爱文, 李东. 中国碳排放灰色预测[J]. 数学的实践与认识, 2012, 42 (4): 61- 69.
|
18 |
朱海龙, 李萍萍. 基于岭回归和LASSO回归的安徽省财政收入影响因素分析[J]. 江西理工大学学报, 2022, 43 (1): 59- 65.
|
19 |
Chen J , Gao M , Cheng S , et al. China's city level carbon emissions during 1992-2017 based on the inter-calibration of nighttime light data[J]. Scientific Reports, 2021, 11 (1): 3323.
doi: 10.1038/s41598-021-81754-y
|
20 |
谢守红, 王利霞, 邵珠龙. 国内外碳排放研究综述[J]. 干旱区地理, 2014, 37 (4): 720- 730.
|
21 |
Shan Y , Guan D , Liu J , et al. Methodology and applications of city level CO2 emission accounts in China[J]. Journal of Cleaner Production, 2017, 161, 1215- 1225.
doi: 10.1016/j.jclepro.2017.06.075
|
22 |
王艳军, 王孟杰, 柳林, 等. DMSP/OLS夜光数据的珠三角碳排放时空差异性分析[J]. 遥感学报, 2022, 26 (9): 1824- 1837.
|
23 |
Earth Observation Group (EOG). DMSP Nighttime Lights Time Series. Colorado School of Mines, Earth Observation Group. Version 4.0. (2002-2021).
|
24 |
Ang B W . The LMDI approach to decomposition analysis: a practical guide[J]. Energy Policy, 2005, 33 (7): 867- 871.
doi: 10.1016/j.enpol.2003.10.010
|
25 |
贾俊平, 何晓群, 金勇进. 统计学(7版)[M]. 北京/西安: 世界图书出版公司, 2020.
|
26 |
郭玉杰, 张一瑾, 杨馥源, 等. 基于LMDI模型的能源系统碳排放影响因素分析[J]. 分布式能源, 2022, 7 (3): 30- 36.
|
27 |
佟昕, 陈凯, 李刚. 中国碳排放影响因素分析和趋势预测—基于STIRPAT和GM(1, 1)模型的实证研究[J]. 东北大学学报(自然科学版), 2015, 36 (2): 297- 300.
doi: 10.3969/j.issn.1005-3026.2015.02.031
|
28 |
凤凰网. 各大银行房地产贷款占比大全[EB/OL]. 北京, 轻金融, 2019. (2019/08/02)[2022/10/02]. https://ishare.ifeng.com/c/s/7opZnd0zEvB.
|
29 |
新京报. "克强指数"折射了什么[EB/OL]. 北京, 卢锋, 2013. (2013/04/13)[2022/10/02]. http://epaper.bjnews.com.cn/html/2013-03/21/content_419032.html.
|
30 |
国家统计局. 中国统计年鉴[EB/OL]. 北京, 国家统计局, 2002-2021. http://www.stats.gov.cn/.
|