 
 气象与环境学报 ›› 2022, Vol. 38 ›› Issue (4): 145-152.doi: 10.3969/j.issn.1673-503X.2022.04.017
        
               		常倬林1,2( ),朱浩然1,2,李得勤3,田磊1,2,党张利1,2
),朱浩然1,2,李得勤3,田磊1,2,党张利1,2
                  
        
        
        
        
    
收稿日期:2021-09-08
									
				
									
				
									
				
											出版日期:2022-08-28
									
				
											发布日期:2022-09-22
									
			作者简介:常倬林,女,1981年生,高级工程师, 主要从事人工影响天气研究,E-mail: 基金资助:
        
               		Zhuo-lin CHANG1,2( ),Hao-ran ZHU1,2,De-qin LI3,Lei TIAN1,2,Zhang-li DANG1,2
),Hao-ran ZHU1,2,De-qin LI3,Lei TIAN1,2,Zhang-li DANG1,2
			  
			
			
			
                
        
    
Received:2021-09-08
									
				
									
				
									
				
											Online:2022-08-28
									
				
											Published:2022-09-22
									
			摘要:
地形云作为最具有前景和可行的人工影响云系,受到人工影响天气工作者和研究人员的关注。本文分析了国内外地形云催化增雨野外科学试验的历史进程,总结了野外科学试验中取得的成果,梳理了在地形云催化增雨试验中需关注的几个关键科学问题,包括对地形云自然降水过程的分析、地形云系统中过冷水在云内的分布、山地云系的微物理过程演变特征及其与中尺度动力结构的关联,介绍了宁夏开展地形云野外科学试验的实践,提出了加快地形云催化野外科学试验,提高地形云云水资源开发利用的对策及建议。为解决中国西北地区干旱问题,推动黄河流域生态环境保护及高质量发展提供了一种思路。
中图分类号:
常倬林,朱浩然,李得勤,田磊,党张利. 地形云催化增雨试验研究进展[J]. 气象与环境学报, 2022, 38(4): 145-152.
Zhuo-lin CHANG,Hao-ran ZHU,De-qin LI,Lei TIAN,Zhang-li DANG. Research progress on the scientific experiment of topographic cloud catalytic precipitation enhancement[J]. Journal of Meteorology and Environment, 2022, 38(4): 145-152.
 
												
												表1
国际主要地形云催化降雨外场试验一览表"
| 序号 | 时间 | 地区 | 试验项目 | 简称 | 解决的科学问题 | 
| 1 | 1951年、1952年、1955年 | 美国加利福尼亚州 | 塞拉波项目(Sierra Wave Project) | — | 研究山区背风波现象,结合高密度地基和机载观测研究中尺度现象 | 
| 2 | 1970年 | 美国科罗拉多州 | 背风波试验(Colorado Lee Wave Experiment) | — | 研究背风波形成机理等 | 
| 3 | 1960—1970年 | 美国克里马克斯 | 克里马克斯计划(Climax Project) | Climax I、Climax II | 研究人工影响地形云的可能性、确定可播性的标准,提出作业方案 | 
| 4 | 1969—1974年 | 喀斯喀特山脉 | 喀斯喀特计划(Cascade Project) | Cascade | 研究冬季云和降水的结构、机制及人工催化对云和降水的影响 | 
| 5 | 1982年 | 阿尔卑斯山脉 | 阿尔卑斯山脉试验(Alpine Experiment) | ALPEX | 研究背风坡气旋生成、山地—大气动量输送、重力波 | 
| 6 | 1982—1983年 | 美国 | 美国冬季地形云增雨试验 | SCCP-1 | 研究对地形云局部人工增雨催化技术 | 
| 7 | 1990年 | 比利牛斯山脉 | 比利牛斯山脉试验(Pyrenees Experiment) | PYREX | 研究提高对风场的认识,定量测量了地表和高空湍流 | 
| 8 | 1993年、1995年 | 新西兰 | 南阿尔卑斯山脉试验(Southern Alps Experiment) | SALPEX | 研究山脉对降雨、降雪、融雪、积雪的强度及分布的影响 | 
| 9 | 1997—1998年 | 美国加利福尼亚州 | 加利佛尼亚地形增雨试验(California Landfalling Jets Experiment) | CALJET | 利用海岸风廓线仪研究加州沿海山区的地形降雨 | 
| 10 | 1999年 | 阿尔卑斯山脉 | 中尺度阿尔卑斯山脉试验(Mesoscale Alpine Project) | MAP | 研究山地降水、三维环流系统和有关气象灾害 | 
| 11 | 2006年 | 美国加利福尼亚州 | 加利福尼亚山地影响试验(Terrain-Induced Rotor Experiment) | T-REX | 研究山脉的波动和数值特征 | 
| 12 | 2007年 | 德国北部 | 对流和地形引发降水研究(Convective and Orographically Induced Precipitation Study) | COPS | 研究中尺度集合模型中深对流降水的起源 | 
| 13 | 2010—2011年 | 美国犹他州 | 冷池研究试验(Persistent Cold-Air Pool Study) | PCAPS | 研究热带由山体激发的对流和降水的动力强迫物理机制 | 
| 14 | 2011年 | 多米尼加 | 多米尼加试验(Dominica Experiment) | DOMEX | 研究热带地区山地对流降水和观测对模式中对流降水的改进 | 
| 15 | 2014年 | 新西兰 | 重力波项目(Deep Gravity Wave Project) | DEEPWAVE | 研究量化重力波在低空产生的源的演化及与其他波的相互作用 | 
| 16 | 2015—2016年 | 美国华盛顿州 | 奥林匹克山试验(Olympic Mountains Experiment) | OLYMPEX | 研究锋面系统自海洋经过山地时GPM遥感反演降水的有效性 | 
| 1 | 尹宪志, 王毅荣, 徐文君, 等. 祁连山空中云水资源开发潜力研究新进展[J]. 沙漠与绿洲气象, 2020, 14 (6): 134- 140. | 
| 2 | 张晋广, 赵姝慧, 刘旸, 等.  一次东北冷涡云降水垂直结构特征分析[J]. 气象与环境学报, 2021, 37 (4): 1- 8. doi: 10.3969/j.issn.1673-503X.2021.04.001 | 
| 3 | 刘伟, 孙玉稳, 谢祥永, 等. 河北省冬季低槽冷锋层状云结构特征和可播性分析[J]. 气象与环境学报, 2021, 37 (3): 110- 116. | 
| 4 | Pokharel B ,  Geerts B ,  Jing X Q .  The impact of ground-based glaciogenic seeding on orographic clouds and precipitation: A multisensor case study[J]. Journal of Applied Meteorology and Climatology, 2014, 53 (4): 890- 909. doi: 10.1175/JAMC-D-13-0290.1 | 
| 5 | 郑国光, 陈跃, 陈添宇, 等. 祁连山夏季地形云综合探测试验[J]. 地球科学进展, 2011, 26 (10): 1057- 1070. | 
| 6 | 高亮书, 姚展予, 贾烁, 等. 六盘山地区一次低槽低涡云系结构及其降水机制的数值模拟研究[J]. 大气科学, 2021, 45 (2): 257- 272. | 
| 7 | 姚俊强, 杨青, 毛炜峄, 等. 西北干旱区大气水分循环要素变化研究进展[J]. 干旱区研究, 2018, 35 (2): 269- 276. | 
| 8 | Bergeron T .  The problem of artificial control of rainfall on the globe: I.General effects of ice-nuclei inclouds[J]. Tellus, 1949, 1 (1): 32- 43. doi: 10.3402/tellusa.v1i1.8493 | 
| 9 | Ludlam F H .  Artificial snowfall from mountain clouds[J]. Tellus, 1955, 7 (3): 277- 290. doi: 10.3402/tellusa.v7i3.8908 | 
| 10 | Reinking R F .  The onset and early growth of snow crystals by accretion of droplets[J]. Journal of the Atmospheric Sciences, 1979, 36 (5): 870- 881. doi: 10.1175/1520-0469(1979)036<0870:TOAEGO>2.0.CO;2 | 
| 11 | Heggli M F ,  Vardiman L ,  Stewart R E , et al.  Super-cooled liquid water and ice crystal distributions with in Sierra Nevada winter storms[J]. Journal of Applied Meteorology and Climatology, 1983, 22 (11): 1875- 1886. doi: 10.1175/1520-0450(1983)022<1875:SLWAIC>2.0.CO;2 | 
| 12 | Heggli M F ,  Rauber R M .  The characteristics and evolution of supercooled water in wintertime storms over the sierra nevada: A summary of microwave radiometric measurements taken during the sierra-cooperative-pilot-project[J]. Journal of Applied Meteorology and Climatology, 1988, 27 (9): 989- 1015. doi: 10.1175/1520-0450(1988)027<0989:TCAEOS>2.0.CO;2 | 
| 13 | Demoz B B ,  Zhang R Y ,  Pitter R L .  An analysis of Sierra Nevada winter orographic storms: Ground-based ice-crystal observations[J]. Journal of Applied Meteorology and Climatology, 1993, 32 (12): 1826- 1836. doi: 10.1175/1520-0450(1993)032<1826:AAOSNW>2.0.CO;2 | 
| 14 | Rauber R M ,  Grant L O ,  Feng D X , et al.  The characteristics and distribution of cloud water over the mountains of northern Colorado during wintertime storms.Part I: Temporal variations[J]. Journal of Applied Meteorology and Climatology, 1986, 25 (4): 468- 488. doi: 10.1175/1520-0450(1986)025<0468:TCADOC>2.0.CO;2 | 
| 15 | Rauber R M ,  Grant L O .  Supercooled liquid water structure of a shallow orographic cloud system in southern Utah[J]. Journal of Applied Meteorology and Climatology, 1987, 26 (1): 208- 215. doi: 10.1175/1520-0450(1987)026<0208:SLWSOA>2.0.CO;2 | 
| 16 | Hill G E ,  Woffinden D S .  A balloon borne instrument for the measurement of vertical profiles of supercooled liquid water concentration[J]. Journal of Applied Meteorology and climatology, 1980, 19 (11): 1285- 1292. doi: 10.1175/1520-0450(1980)019<1285:ABIFTM>2.0.CO;2 | 
| 17 | Sassen K ,  Rauber R M ,  Snider J B .  Multiple remote sensor observations of supercooled liquid water in a winter storm at beaver, Utah[J]. Journal of Applied Meteorology, 1986, 25 (6): 825- 834. doi: 10.1175/1520-0450(1986)025<0825:MRSOOS>2.0.CO;2 | 
| 18 | Sassen K ,  Huggins A W ,  Long A B , et al.  Investigations of a winter mountain storm in utah.part Ⅱ: Mesoscale structure, supercooled liquid water development, and precipitation processes[J]. Journal of the Atmospheric Sciences, 1990, 47 (11): 1323- 1350. doi: 10.1175/1520-0469(1990)047<1323:IOAWMS>2.0.CO;2 | 
| 19 | Tessendorf S A ,  French J R ,  Friedrich K , et al.  A transformational approach to winter orographic weather modification research: the SNOWIE project[J]. Bulletin of the American Meteorological Society, 2019, 100 (1): 71- 92. doi: 10.1175/BAMS-D-17-0152.1 | 
| 20 | Hobbs P V ,  Radke L F .  Nature of winter clouds and precipitation in Cascade Mountains and their modification by artificial seeding.partⅡ: Techniques for the physical evaluation of seeding[J]. Journal of Applied Meteorology and Climatology, 1975, 14 (5): 805- 818. doi: 10.1175/1520-0450(1975)014<0805:TNOWCA>2.0.CO;2 | 
| 21 | Ikeda K ,  Rasmussen R M ,  Hall W D , et al.  Observations of freezing drizzle in extratropical cyclonic storms during IMPROVE-2[J]. Journal of the Atmospheric Sciences, 2007, 64 (9): 3016- 3043. doi: 10.1175/JAS3999.1 | 
| 22 | Politovich M K ,  Vali G .  Observations of liquid water in orographic clouds over Elk Mountain[J]. Journal of the Atmospheric Sciences, 1983, 40 (5): 1300- 1312. doi: 10.1175/1520-0469(1983)040<1300:OOLWIO>2.0.CO;2 | 
| 23 | Jing X P ,  Geerts B .  Dual-polarization radar data analysis of the impact of ground-based glaciogenic seeding on winter orographic clouds.Part Ⅱ: Convective clouds[J]. Journal of Applied Meteorology and Climatology, 2015, 54 (10): 2099- 2117. doi: 10.1175/JAMC-D-15-0056.1 | 
| 24 | Rasmussen R M ,  Tessendorf S A ,  Xue L L , et al.  Evaluation of the Wyoming Weather Modification Pilot Project(WWMPP) using two approaches: traditional statistics and ensemble modeling[J]. Journal of Applied Meteorology and Climatology, 2018, 57 (11): 2639- 2660. doi: 10.1175/JAMC-D-17-0335.1 | 
| 25 | Long A B ,  Carter E J .  Australian winter mountain storm clouds: Precipitation augmentation potential[J]. Journal of Applied Meteorology and Climatology, 1996, 35 (9): 1457- 1464. doi: 10.1175/1520-0450(1996)035<1457:AWMSCP>2.0.CO;2 | 
| 26 | Kusunoki K ,  Murakami M ,  Hoshimoto M , et al.  The characteristics and evolution of orographic snow clouds under weak cold advection[J]. Monthly Weather Review, 2004, 132 (1): 174- 191. doi: 10.1175/1520-0493(2004)132<0174:TCAEOO>2.0.CO;2 | 
| 27 | Kusunoki K ,  Murakami M ,  Orikasa N , et al.  Observations of quasi-stationary and shallow orographic snow clouds: Spatial distributions of supercooled liquid water and snow particles[J]. Monthly Weather Review, 2005, 133 (4): 743- 751. doi: 10.1175/MWR2874.1 | 
| 28 | 马士剑, 王旭, 马禹, 等. 新疆层状云冰粒子属性的垂直分布特征[J]. 水资源研究, 2016, 5 (6): 583- 591. | 
| 29 | 周仲岛.  近30a台湾非台风暴雨研究回顾[J]. 暴雨灾害, 2020, 39 (2): 109- 116. doi: 10.3969/j.issn.1004-9045.2020.02.001 | 
| 30 | 樊鹏. 陕甘宁人工增雨技术开发研究[M]. 北京: 气象出版社, 2003. | 
| 31 | 付双喜, 张鸿发, 楚荣忠. 祁连山中部一次地形强降水多普勒雷达资料分析[C]//中国气象学会人工影响天气委员会. 第十五届全国云降水与人工影响天气科学会议论文集(I). 北京: 气象出版社, 2008. | 
| 32 | 陈添宇, 郑国光, 陈跃, 等. 祁连山夏季西南气流背景下地形云形成和演化的观测研究[J]. 高原气象, 2010, 29 (1): 152- 163. | 
| 33 | Sassen K ,  Zhao H J .  Supercooled liquid water clouds in Utah winter mountain storms: Cloud-seeding implications of a remote-sensing dataset[J]. Journal of Applied Meteorology and Climatology, 1993, 32 (9): 1548- 1558. doi: 10.1175/1520-0450(1993)032<1548:SLWCIU>2.0.CO;2 | 
| 34 | Rauber R M ,  Tokay A .  An explanation for the existence of supercooled water at the top of cold clouds[J]. Journal of the Atmospheric Sciences, 1991, 48 (8): 1005- 1023. doi: 10.1175/1520-0469(1991)048<1005:AEFTEO>2.0.CO;2 | 
| 35 | Morrison A E ,  Siems S T ,  Manton M J , et al.  On a natural environment for glaciogenic cloud seeding[J]. Journal of Applied Meteorology and Climatology, 2013, 52 (5): 1097- 1104. doi: 10.1175/JAMC-D-12-0108.1 | 
| 36 | Keeler J M ,  Jewett B F ,  Rauber R M , et al.  Dynamics of cloud-top generating cells in winter cyclones.Part I: Idealized simulations in the context of field observations[J]. Journal of the Atmospheric Sciences, 2016, 73 (4): 1507- 1527. doi: 10.1175/JAS-D-15-0126.1 | 
| 37 | Reinking R F ,  Snider J B ,  Coen J L .  Influences of storm-embedded orographic gravity waves on cloud liquid water and precipitation[J]. Journal of Applied Meteorology and Climatology, 2000, 39 (6): 733- 759. doi: 10.1175/1520-0450(2000)039<0733:IOSEOG>2.0.CO;2 | 
| 38 | Bruintjes R T ,  Clark T L ,  Hall W D .  Interactions between topographic airflow and cloud/precipitation development during the passage of a winter storm in Arizona[J]. Journal of the Atmospheric Sciences, 1994, 51 (1): 48- 67. doi: 10.1175/1520-0469(1994)051<0048:IBTAAC>2.0.CO;2 | 
| 39 | Lee T F .  Winter diurnal trends of sierra nevada supercooled liquid water and precipitation[J]. Journal of Applied Meteorology and Climatology, 1988, 27 (4): 458- 472. doi: 10.1175/1520-0450(1988)027<0458:WDTOSN>2.0.CO;2 | 
| 40 | Geerts B ,  Miao Q ,  Yang Y .  Boundary layer turbulence and orographic precipitation growth in cold clouds: Evidence from profiling airborne radar data[J]. Journal of the Atmospheric Sciences, 2011, 68 (10): 2344- 2365. doi: 10.1175/JAS-D-10-05009.1 | 
| 41 | Chu X ,  Geerts B ,  Kosovic' B .  The impact of boundary layer turbulence on snow growth and precipitation: Idealized large eddy simulations[J]. Atmospheric Research, 2018, 204, 54- 66. doi: 10.1016/j.atmosres.2018.01.015 | 
| 42 | Marwitz J D .  Deep orographic storms over the sierra nevada.part Ⅱ.The precipitation processes[J]. Journal of the Atmospheric Sciences, 1987, 44 (1): 174- 185. doi: 10.1175/1520-0469(1987)044<0174:DOSOTS>2.0.CO;2 | 
| 43 | Rauber R M .  Microphysical structure and evolution of a central sierra nevada orographic cloud system[J]. Journal of Applied Meteorology and Climatology, 1992, 31 (1): 3- 24. doi: 10.1175/1520-0450(1992)031<0003:MSAEOA>2.0.CO;2 | 
| 44 | Stoelinga M T ,  Hobbs P V ,  Mass C F , et al.  Improvement of microphysical parameterization through observational verification experiment[J]. Bulletin of the American Meteorological Society, 2003, 84 (12): 1807- 1826. doi: 10.1175/BAMS-84-12-1807 | 
| 45 | Rauber R M . Characteristics of cloud ice and precipitation during wintertime storms over the mountains of Northern Colorado[J]. Journal of Applied Meteorology and Climatology, 1987, 26 (4): 488- 524. | 
| 46 | Cooper W A , Saunders C P R . Winter storms over the San Juan Mountains.Part Ⅱ: Microphysical processes[J]. Journal of Applied Meteorology and Climatology, 1980, 19 (8): 927- 941. | 
| 47 | Vali G , Leon D , Snider J R . Ground-layer snow clouds[J]. Quarterly Journal of the Royal Meteorological Society, 2012, 138 (667): 1507- 1525. | 
| 48 | Geerts B , Pokharel B , Kristovich D A R . Blowing snow as a natural glaciogenic cloud seeding mechanism[J]. Monthly Weather Review, 2015, 143 (12): 5017- 5033. | 
| 49 | Plummer D M , Mcfarquhar G M , Rauber R M , et al. Structure and statistical analysis of the microphysical properties of generating cells in the comma head region of continental winter cyclones[J]. Journal of the Atmospheric Sciences, 2014, 71 (11): 4181- 4203. | 
| 50 | Rosenow A A , Plummer D M , Rauber R M , et al. Vertical velocity and physical structure of generating cells and elevated convection in the comma head region of continental of winter cyclones[J]. Journal of the Atmospheric Sciences, 2014, 71 (5): 1538- 1558. | 
| 51 | Kumjian M R , Rutledge S A , Rasmussen R M , et al. High-resolution polarimetric radar observations of snow-generating cells[J]. Journal of Applied Meteorologyand Climatology, 2014, 53 (6): 1636- 1658. | 
| 52 | Geerts B , Yang Y , Rasmussen R , et al. Snow growth and transport patterns in orographic storms as estimated from Airborne Vertical-Plane Dual-Doppler Radar data[J]. Monthly Weather Review, 2015, 143 (2): 644- 665. | 
| 53 | Pokharel B , Geerts B . A multi-sensor study of the impact of ground-based glaciogenic seeding on clouds and precipitation over mountains in Wyoming.Part I: Project description[J]. Atmospheric Research, 2016, 182, 269- 281. | 
| 54 | 孙艳桥, 汤达章, 桑建人, 等. RPG_HATPRO_G4型地基微波辐射计温度数据质量控制方法与效果分析[J]. 干旱区地理, 2019, 42 (6): 1282- 1290. | 
| 55 | 曹宁, 张立新, 桑建人, 等. 基于微雨雷达的六盘山区地形云降水宏微观特征观测分析[J]. 气象科学, 2019, 39 (6): 775- 785. | 
| 56 | 田磊, 桑建人, 姚展予, 等. 六盘山区夏秋季大气水汽和液态水特征初步分析[J]. 气象与环境学报, 2019, 35 (6): 28- 37. | 
| 57 | 田磊, 桑建人, 姚展予, 等. 基于Ka波段云雷达的六盘山顶云特征分析[J]. 气象与环境学报, 2021, 37 (2): 84- 90. | 
| 58 | 陶涛, 张立新, 桑建人, 等. 六盘山区一次非典型冰雹天气过程微物理量特征的分析[J]. 干旱区地理, 2020, 43 (2): 299- 307. | 
| 59 | 林彤, 桑建人, 姚展予, 等. 基于微波辐射计的宁夏六盘山西侧大气水汽变化特征[J]. 干旱区地理, 2021, 44 (4): 923- 933. | 
| 60 | 段婧, 楼小凤, 卢广献, 等. 国际人工影响天气技术新进展[J]. 气象, 2017, 43 (12): 1562- 1571. | 
| 61 | 沙修竹, 邵振平, 刘艳华, 等. 基于CA-FCM方法的飞机增雨效果检验及分析[J]. 气象与环境学报, 2020, 36 (2): 78- 84. | 
| [1] | 祁红彦, 申辉, 韦巍, 刘志. 西岭雪山地形云人工增雪试验研究[J]. 气象与环境学报, 2017, 33(4): 93-101. | 
| [2] | 杨旭,周德平,苏景宝. 辽宁人工增雨示范区降水云系与降水量分析[J]. 气象与环境学报, 2006, 22(5): 36-39. | 
| [3] | 王吉宏,韩江文,胡伟,盛永,杜见微. 适合飞机人工增雨作业天气系统的雷达回波特征分析[J]. 气象与环境学报, 2006, 22(3): 1-6. | 
| [4] | 祖歌,张涛,刘昕. VB语言在人工增雨降水数据统计中的应用[J]. 气象与环境学报, 2005, 21(3): 29-30. | 
| [5] | 班显秀,王吉宏. 辽宁水资源状况浅析[J]. 气象与环境学报, 2004, 20(4): 27-28. | 
| [6] | 王永亮,田广元,房彬,范维东. 多普勒雷达资料检验增雨催化效果的个例分析[J]. 气象与环境学报, 2004, 20(4): 31-32. | 
| [7] | 王吉宏,班显秀. 辽宁冬季人工增雪的可行性分析[J]. 气象与环境学报, 2003, 19(4): 19-21. | 
| [8] | 周德平. 国内外人工影响天气科研业务动态——世界气象组织第8届人工影响天气科学讨论会综述[J]. 气象与环境学报, 2003, 19(3): 20-23. | 
| [9] | 周德平,宫福久. 辽宁人工影响天气工作综述[J]. 气象与环境学报, 1999, 15(3): 33-37. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||
| 
 | ||