主办单位:中国气象局沈阳大气环境研究所
国际刊号:ISSN 1673-503X
国内刊号:CN 21-1531/P

气象与环境学报 ›› 2024, Vol. 40 ›› Issue (4): 138-144.doi: 10.3969/j.issn.1673-503X.2024.04.017

• 快报 • 上一篇    

基于气象指数的石家庄市夏季日用电量模型对比分析

张翠华1,2,3(),段潇楠4,卞韬3   

  1. 1. 中国气象局雄安大气边界层重点开放实验室,河北雄安新区 071800
    2. 河北省气象与生态环境重点实验室,河北石家庄 050021
    3. 石家庄市气象局,河北石家庄 050081
    4. 西安交通大学城市学院,陕西西安 710018
  • 收稿日期:2023-03-20 出版日期:2024-08-28 发布日期:2024-10-11
  • 作者简介:张翠华,女,1976年生,高级工程师,主要从事应用气象服务研究,E-mail:zch7695@sina.com
  • 基金资助:
    国家自然科学基金项目(41875085);国家重点研发计划项目(2020YFF0304401);河北省气象局科研开发项目(20ky15)

Comparative analysis of summer daily electricity consumption model in Shijiazhuang based on meteorological indices

Cuihua ZHANG1,2,3(),Xiaonan DUAN4,Tao BIAN3   

  1. 1. CMA Xiong′an Atmospheric Boundary Layer Key Laboratory, Xiong′an New Area 071800, China
    2. Key Laboratory of Meteorology and Ecological Environment of Hebei Province, Shijiazhuang 050021, China
    3. Shijiazhuang Meteorological Service, Shijiazhuang 050081, China
    4. City College Xi′an Jiaotong University, Xi′an 710018, China
  • Received:2023-03-20 Online:2024-08-28 Published:2024-10-11

摘要:

选用2017—2021年夏季石家庄市逐日社会用电量和气象要素数据,计算温湿指数、暑热指数、舒适度指数3种气象指数,应用多元线性回归分析和BP神经网络算法,分析该地区夏季逐日社会用电量与气象指数的相关关系,建立用电量多元线性回归模型和神经网络模型。结果表明:石家庄市夏季的社会日用电量和人居环境不适日数时空分布基本一致,夏季的逐日气象指数与社会用电量呈显著正相关。与温湿指数、暑热指数相比,夏季的社会日用电量与基于舒适度指数的人居环境不适日数正相关最为显著,以舒适度指数为参数的夏季社会日用电量模型更为适用。应用多元线性回归分析和BP神经网络算法均能较好拟合社会日用电量的总体变化趋势,但BP神经网络算法误差较大。将社会日用电量多元线性回归分析模型误差贡献较大的6月进行分段建模,并设定进入峰值期、谷值期的气象要素及舒适度指数阈值,可提高社会日用电量模型的预报准确率。

关键词: 多元线性回归, BP神经网络, 舒适度指数

Abstract:

Based on the daily social electricity consumption and meteorological data of Shijiazhuang in summer from 2017 to 2021, we calculated temperature and humidity index, hotness index, and comfort index. We employed multiple linear regression analysis and the BP neural network algorithm to explore the correlation between daily social electricity consumption and these meteorological indices in the region. We then developed models for electricity consumption, i.e.a multiple linear regression model and a neural network model. The results indicated that the spatial and temporal distribution of daily electricity consumption and the number of uncomfortable days of living environments during summer are largely similar. Moreover, there is a notably positive correlation between the summer daily meteorological indices and social electricity consumption. Among the indices, the correlation between daily electricity use and the number of environmentally uncomfortable days is the most significant. A model parameterized by the comfort index for predicting daily summer electricity consumption is found to be particularly applicable. The study demonstrates that both the multiple linear regression analysis and the BP neural network algorithm can effectively capture the general trend of daily social electricity consumption, although the latter exhibits a higher degree of error. The accuracy of the social daily electricity consumption forecast model can be enhanced by focusing on the month of June, which significantly contributes to the error in the multiple linear regression analysis model. Additionally, establishing thresholds for meteorological factors and comfort indices that define the onset of peak and trough periods can further refine the model′s predictive capabilities.

Key words: Multiple linear regression, BP neural network, Comfort index

中图分类号: