Journal of Meteorology and Environment ›› 2024, Vol. 40 ›› Issue (1): 105-112.doi: 10.3969/j.issn.1673-503X.2024.01.0013
• Bulletins • Previous Articles
Received:
2023-08-24
Online:
2024-02-28
Published:
2024-03-25
CLC Number:
Yuheng WU,Jingchang BAI. Analysis and prediction of driving factors for carbon emissions in typical cities of China based on remote sensing data and machine learning method[J]. Journal of Meteorology and Environment, 2024, 40(1): 105-112.
Table 1
Classification table of 15 typical cities"
城市类型 | 城市名称 | 划分依据 | 数据来源 |
超大城市 | 北京、上海、广州 | 省会城市和直辖市中,年末户籍人口超过800万,且2016—2020年5 a内,年均第三产业GDP占全年GDP的70%以上。 | 国家统计局与部分城市能源统计年鉴 |
技术创新型 | 南京、杭州、成都、济南 | 省会城市中,2016—2020年5 a内,年均第三产业GDP占全年GDP的60%以上。 | |
工业发展型 | 西安、沈阳、哈尔滨、武汉、重庆 | 省会城市和直辖市中,2016—2020年5 a内年均第二产业GDP占全年GDP的45%以上。 | |
能源依赖型 | 太原、呼和浩特、乌鲁木齐 | 省会城市所在省级单位,位列全国资源型城市名单(2013年)数量大于8个,资源型城市是以本地区矿产、森林等自然资源开采、加工为主导产业的城市。 |
Table 2
Data sources and basic information"
数据 | 数据定义 | 数据来源 | 起止年份 |
城市碳排放总量(CE)(106 T/年) | 城市碳排放指的是城市辖区内的所有直接排放、城市辖区外的与城市内部活动有关的间接排放之和。 | 中国碳核算数据库 | 2002—2017 |
城市生产总值(¥109/年) | 城市所有常住单位在一定时期内生产活动的最终成果,城市生产总值等于各产业增加值之和。 | 国家统计局 | 2002—2017 |
能源消费量(ES)(104T/年) | 城市在报告期内实际消费的各种能源的数量。 | 2002—2017 | |
城市人口(P)(104人/年) | 城市人口等于城市行政区划内的人口,包括所辖区和代管县的城市和农村人口。 | 2002—2017 | |
第三产业占比(TIR)(无量纲,取值0~1) | 第三产业占比是第三产业产值占地区生产总值的比重。 | 2002—2017 | |
年旅客运输量(PT)(104人/年) | 旅客运输量是运输部门在一定时期内实际运送旅客的数量。 | 2002—2017 | |
年货物运输量(CT)(104 T/年) | 货物运输量是按重量“吨”为单位计算的需要发送的货物数量。 | 2002—2017 | |
房地产开发施工面积(RECA)(104m2/年) | 房地产开发施工面积是指报告期内施工的全部房屋(包括地下室、半地下室以及配套房屋)建筑面积。 | 2002—2017 | |
能源消费结构(EI)(无量纲) | 本研究中,能源消费结构是指天然气消费占总能源消费比重。 | 2002—2017 | |
夜间灯光强度(NL)(NW/cm2/sr) | 夜间灯光强度是指夜光遥感卫星获取地表发射的可见光-近红外电磁波,在单位投影面积、单位立体角上的辐射通量。 | DMSP卫星OLS传感器数据 | 2002—2013 |
NPP卫星VIIRS传感器数据 | 2014—2017 |
Table 4
Validation of simulation results from Lasso regression and Ridge regression models with different variable combinations"
类型 | RMSE | r2 | best_lambda |
Lasso_s1 | 16.64 | 0.88 | 0.0357 |
Lasso_s2 | 17.80 | 0.85 | 0.0001 |
Lasso_s3 | 21.14 | 0.81 | 0.0001 |
ridge_s1 | 16.80 | 0.88 | 0.0304 |
ridge_s2 | 17.77 | 0.86 | 0.0329 |
ridge_s3 | 20.67 | 0.81 | 0.0387 |
1 |
Shan Y L , Guan D B , Hubacek K , et al. City-level climate change mitigation in China[J]. Science Advances, 2018, 4 (6): eaaq0390.
doi: 10.1126/sciadv.aaq0390 |
2 | 赵俊刚, 董鑫, 尹名强, 等. 基于碳中和及气候适应性原则的被动式建筑应用潜力研究——以重庆市为例[J]. 气象与环境学报, 2022, 38 (5): 1- 14. |
3 |
Hoekstra R , Jeroen C J. M . Comparing structural decomposition analysis and index[J]. Energy Economics, 2003, 25 (1): 39- 64.
doi: 10.1016/S0140-9883(02)00059-2 |
4 |
Ang B W . Decomposition analysis for policymaking in energy: which is the preferred method?[J]. Energy Policy, 2004, 32 (9): 1131- 1139.
doi: 10.1016/S0301-4215(03)00076-4 |
5 | 李小冬, 朱辰. 我国建筑碳排放核算及影响因素研究综述[J]. 安全与环境学报, 2020, 20 (1): 317- 327. |
6 |
Ye B , Jiang J J , Li C S , et al. Quantification and driving force analysis of provincial-level carbon emissions in China[J]. Applied Energy, 2017, 198, 223- 238.
doi: 10.1016/j.apenergy.2017.04.063 |
7 |
Akpan U , Bhattacharyya S C , Isihak S R , et al. Effect of technology change on CO2 emissions in Japan's industrial sectors in the period 1995-2005:an input-o utput structural decomposition analysis[J]. Environmental and Resource Economics, 2015, 61 (2): 165- 189.
doi: 10.1007/s10640-014-9787-7 |
8 |
Wang R , Zheng X , Wang H , et al. Emission drivers of cities at different industrialization phases in China[J]. Journal of Environmental Management, 2019, 250, 109494.
doi: 10.1016/j.jenvman.2019.109494 |
9 | 郑颖, 逯非, 刘晶茹, 等. 我国典型城市化石能源消费CO2排放及其影响因素比较研究[J]. 生态学报, 2020, 40 (10): 3315- 3327. |
10 |
钟宇峰, 牛涛, 贾文贤, 等. 阅海湿地芦苇NPP遥感估算及其时空变化分析[J]. 气象与环境学报, 2021, 37 (6): 71- 78.
doi: 10.3969/j.issn.1673-503X.2021.06.009 |
11 | 冯锐, 纪瑞鹏, 武晋雯, 等. 基于FY3/MERSI数据的辽宁省植被指数重建及时空变化分析[J]. 气象与环境学报, 2022, 38 (1): 65- 73. |
12 |
李雨鸿, 陶苏林, 李荣平, 等. 辽宁省净初级生产力时空演变及其对地形因子的响应[J]. 气象与环境学报, 2021, 37 (5): 107- 112.
doi: 10.3969/j.issn.1673-503X.2021.05.016 |
13 |
Li J F , Wang F F , Fu Y C , et al. A novel SUHI referenced estimation method for multicenters urban agglomeration using DMSP/OLS nighttime light data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 1416- 1425.
doi: 10.1109/JSTARS.2020.2981285 |
14 |
York R , Rosa E A , Dietz T . IPAT and Impact: analytic tools for unpacking the driving forces of environmental impacts[J]. Ecological Economics, 2003, 46 (3): 351- 365.
doi: 10.1016/S0921-8009(03)00188-5 |
15 | 唐赛, 付杰文, 武俊丽. 中国典型城市碳排放影响因素分析[J]. 统计与决策, 2021, 37 (23): 59- 63. |
16 | 申笑颜. 中国碳排放影响因素的分析与预测[J]. 统计与决策, 2010, 26 (19): 90- 92. |
17 | 赵爱文, 李东. 中国碳排放灰色预测[J]. 数学的实践与认识, 2012, 42 (4): 61- 69. |
18 | 朱海龙, 李萍萍. 基于岭回归和LASSO回归的安徽省财政收入影响因素分析[J]. 江西理工大学学报, 2022, 43 (1): 59- 65. |
19 |
Chen J , Gao M , Cheng S , et al. China's city level carbon emissions during 1992-2017 based on the inter-calibration of nighttime light data[J]. Scientific Reports, 2021, 11 (1): 3323.
doi: 10.1038/s41598-021-81754-y |
20 | 谢守红, 王利霞, 邵珠龙. 国内外碳排放研究综述[J]. 干旱区地理, 2014, 37 (4): 720- 730. |
21 |
Shan Y , Guan D , Liu J , et al. Methodology and applications of city level CO2 emission accounts in China[J]. Journal of Cleaner Production, 2017, 161, 1215- 1225.
doi: 10.1016/j.jclepro.2017.06.075 |
22 | 王艳军, 王孟杰, 柳林, 等. DMSP/OLS夜光数据的珠三角碳排放时空差异性分析[J]. 遥感学报, 2022, 26 (9): 1824- 1837. |
23 | Earth Observation Group (EOG). DMSP Nighttime Lights Time Series. Colorado School of Mines, Earth Observation Group. Version 4.0. (2002-2021). |
24 |
Ang B W . The LMDI approach to decomposition analysis: a practical guide[J]. Energy Policy, 2005, 33 (7): 867- 871.
doi: 10.1016/j.enpol.2003.10.010 |
25 | 贾俊平, 何晓群, 金勇进. 统计学(7版)[M]. 北京/西安: 世界图书出版公司, 2020. |
26 | 郭玉杰, 张一瑾, 杨馥源, 等. 基于LMDI模型的能源系统碳排放影响因素分析[J]. 分布式能源, 2022, 7 (3): 30- 36. |
27 |
佟昕, 陈凯, 李刚. 中国碳排放影响因素分析和趋势预测—基于STIRPAT和GM(1, 1)模型的实证研究[J]. 东北大学学报(自然科学版), 2015, 36 (2): 297- 300.
doi: 10.3969/j.issn.1005-3026.2015.02.031 |
28 | 凤凰网. 各大银行房地产贷款占比大全[EB/OL]. 北京, 轻金融, 2019. (2019/08/02)[2022/10/02]. https://ishare.ifeng.com/c/s/7opZnd0zEvB. |
29 | 新京报. "克强指数"折射了什么[EB/OL]. 北京, 卢锋, 2013. (2013/04/13)[2022/10/02]. http://epaper.bjnews.com.cn/html/2013-03/21/content_419032.html. |
30 | 国家统计局. 中国统计年鉴[EB/OL]. 北京, 国家统计局, 2002-2021. http://www.stats.gov.cn/. |
[1] | Xu-ting ZHANG, Hui LIU, Rui-fang LIU, Fei JU, Jia-hui-min LIU, Xing-xing GAO, Shao-ni HUANG, Nan WANG. Study on hourly PM2.5 concentration forecast based on XGBoost method in Xi'an city [J]. Journal of Meteorology and Environment, 2023, 39(1): 44-54. |
[2] | Jing-li WANG, Tian-jiao GAO, Rong-ping LI, Peng-cheng YU, Yun-tao MA, Na MI, Ri-hong WEN, Kai ZHANG. Research on soil moisture retrieval model based on optical remote sensing and microwave remote sensing [J]. Journal of Meteorology and Environment, 2023, 39(1): 73-82. |
[3] | Yu-qin HE,Hong XU,Jin-xin CHENG,Li-zhang FAN. Variation of ecosystem quality and its response to climatic factors in Erhai Basin [J]. Journal of Meteorology and Environment, 2023, 39(1): 100-106. |
[4] | Tao WANG, Yi-shu WANG, Chun-yu ZHAO, Xiao-tao WANG, Mei-ou QIN, Yu-min SHEN, Yi-ling HOU, Jian-yun ZHAO. Prediction model of first-frost date in Liaoning province using machine learning methods [J]. Journal of Meteorology and Environment, 2022, 38(4): 47-56. |
[5] | Yu-feng ZHONG, Tao NIU, Wen-xian JIA, Yun-lei CUI, Hong-li LIU, Bo-wen DENG, Yang CUI, Men-xin WU. Remote sensing estimation of reed NPP in Yuehai Wetland and characteristic analysis of its temporal and spatial changes [J]. Journal of Meteorology and Environment, 2021, 37(6): 71-78. |
[6] | Yuan-mou WANG,Jia-qi LI,Shi-ji CHEN,Jia-ping TANG,Bai-cheng XIA,Shi-gang HAN. Identification of the fog image features on the Yangtze River waterways in Chongqing based on machine learning [J]. Journal of Meteorology and Environment, 2021, 37(1): 106-112. |
[7] | Xing-xing GAO, Hai-lin GUI, Liu-jie PAN, Nan WANG, Jian-peng WANG. Statistical analysis of air pollution in Fenwei Plain based on satellite remote sensing and ground observation data [J]. Journal of Meteorology and Environment, 2020, 36(4): 36-44. |
[8] | WU Gang-zhe;YAN Jin-zhe; REN Guo-yu; SUONAN Kan-zhuo. Relationship between fractional vegetation and climate factors in spring over the mid-west of DPR Korea [J]. Journal of Meteorology and Environment, 2018, 34(4): 112-118. |
[9] | LIANG Dong-po, SUN Zhi-gui, GUO Jun, GUO Yu-di, WANG Jing, XU Jun-de. Study on meteorological disaster risk division in Jinnan District of Tianjin based on RS and GIS [J]. Journal of Meteorology and Environment, 2016, 32(6): 116-121. |
[10] | WANG Ying, LI Guo-chun, GAO Yang-hua, DU Qin, ZHAO Zi-qi. Polarization-difference parameterization in estimating liquid water path based on AMSR-E data [J]. Journal of Meteorology and Environment, 2016, 32(2): 59-65. |
[11] | WEN Ri-hong, WANG Xiao-ying, LV Guo-hong,XIE Yan-bing, JIANG Peng, LI Si-wen, LIU Xiao-mei. Remote sensing analysis of ecological recovery in the Liaohe river protection zone [J]. Journal of Meteorology and Environment, 2013, 29(6): 110-115. |
[12] | YANG Yun-ling,WANG Cong-mei. Characteristics of acid rain and its influencing factors from 2006 to 2010 in Nangong, Hebei province [J]. Journal of Meteorology and Environment, 2012, 28(4): 79-83. |
[13] | ZHAO Dong-Yan. Characteristics of variations of pan evaporation and its influencing factors in Dalian, Liaoning province [J]. Journal of Meteorology and Environment, 2011, 27(4): 34-38. |
[14] | YU Wen-Ying, FENG Rui, JI Rui-Peng, ZHANG Yu-Shu, CHEN Peng-Shi, ZHAO Xian-Li, WU Jin-Wen. Advances in rice planting area extraction technology based on MODIS data [J]. Journal of Meteorology and Environment, 2011, 27(2): 56-61. |
[15] | LI De-ping;CHENG Xing-hong;YU Yong-tao;CAO Hai-wei;LI Dong;XU Shi-qing. Effects of meteorological factors on air quality above the third grade pollution in Beijing [J]. Journal of Meteorology and Environment, 2010, 26(3): 7-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|