Journal of Meteorology and Environment ›› 2024, Vol. 40 ›› Issue (4): 107-115.doi: 10.3969/j.issn.1673-503X.2024.04.013
• Articles • Previous Articles Next Articles
Hui ZHAO1,2,3(),Menghua LI1,2,3,Jianling YANG1,2,3,Jianping LI1,4,*(
),Yanping WANG5,Yingjuan HAN1,2,3,Haiying WU6
Received:
2023-04-19
Online:
2024-08-28
Published:
2024-10-11
Contact:
Jianping LI
E-mail:zhaohui_cau@163.com;lijp_111@163.com
CLC Number:
Hui ZHAO,Menghua LI,Jianling YANG,Jianping LI,Yanping WANG,Yingjuan HAN,Haiying WU. Spatial and temporal variations of vegetation net primary productivity and its driving factors in Ningxia from 2000 to 2020[J]. Journal of Meteorology and Environment, 2024, 40(4): 107-115.
Table 1
Grading indicators of trend changes"
β | Z | 变化趋势 | β | Hurst | 未来趋势 |
β>0 | Z>2.58 | 极显著增大 | β>0 | Hurst>0.5 | 持续增大 |
1.96<Z≤2.58 | 显著增大 | Hurst=0.5 | 无持续变化 | ||
Z≤1.96 | 不显著增大 | Hurst<0.5 | 反持续增大 | ||
β=0 | — | 无变化 | β=0 | Hurst>0.5 | 持续不变 |
Hurst≤0.5 | 无持续变化 | ||||
β<0 | Z≤1.96 | 不显著减小 | β<0 | Hurst>0.5 | 持续减小 |
1.96<Z≤2.58 | 显著减小 | Hurst=0.5 | 无持续变化 | ||
Z>2.58 | 极显著减小 | Hurst<0.5 | 反持续减小 |
Table 4
Types of interactions between dual factors and net primary productivity of vegetation in Ningxia for five representative years during 2000 to 2020"
年份 | 第一主导交互作用 | 第二主导交互作用 | 第三主导交互作用 |
2000年 | 年降水∩高程0.743 | 年最高气温∩高程0.697 | 年降水∩土地利用0.681 |
2005年 | 年降水∩土地利用0.808 | 年降水∩高程0.793 | 年日照时数∩土地利用0.755 |
2010年 | 年降水∩高程0.779 | 年降水∩土地利用0.761 | 年日照时数∩高程0.722 |
2015年 | 年降水∩高程0.830 | 年降水∩土地利用0.830 | 年降水∩坡度0.799 |
2020年 | 年降水∩高程0.748 | 年降水∩土地利用0.701 | 年最高气温∩高程0.697 |
1 | Lieth H , Whittaker R H . Primary productivity of the biosphere[M]. Berlin, Heidelberg: Springer, 1975. |
2 |
Field C B , Behrenfeld M J , Randerson J T , et al. Primary production of the biosphere: integrating terrestrial and oceanic components[J]. Science, 1998, 281 (5374): 237- 240.
doi: 10.1126/science.281.5374.237 |
3 |
朱文泉, 陈云浩, 徐丹, 等. 陆地植被净初级生产力计算模型研究进展[J]. 生态学杂志, 2005, 24 (3): 296- 300.
doi: 10.3321/j.issn:1000-4890.2005.03.014 |
4 |
Zhao M S , Running S W . Drought-induced reduction in global terrestrial net primary production from 2000 through 2009[J]. Science, 2010, 329 (5994): 940- 943.
doi: 10.1126/science.1192666 |
5 |
Wang Z Q , Wang H , Wang T F , et al. Effects of environmental factors on the changes in MODIS NPP along DEM in global terrestrial ecosystems over the last two decades[J]. Remote Sensing, 2022, 14 (3): 713.
doi: 10.3390/rs14030713 |
6 | 李登科, 王钊. 基于MOD17A3的中国陆地植被NPP变化特征分析[J]. 生态环境学报, 2018, 27 (3): 397- 405. |
7 | 张振宇, 钟瑞森, 李小玉, 等. 中国西北地区NPP变化及其对干旱的响应分析[J]. 环境科学研究, 2019, 32 (3): 431- 439. |
8 | 谢宝妮, 秦占飞, 王洋, 等. 黄土高原植被净初级生产力时空变化及其影响因素[J]. 农业工程学报, 2014, 30 (11): 244- 253. |
9 | 田智慧, 张丹丹, 赫晓慧, 等. 2000—2015年黄河流域植被净初级生产力时空变化特征及其驱动因子[J]. 水土保持研究, 2019, 26 (2): 255- 262. |
10 |
Turner D P , Ritts W D , Cohen W B , et al. Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring[J]. Global Change Biology, 2005, 11 (4): 666- 684.
doi: 10.1111/j.1365-2486.2005.00936.x |
11 |
Ge W Y , Deng L Q , Wang F , et al. Quantifying the contributions of human activities and climate change to vegetation net primary productivity dynamics in China from 2001 to 2016[J]. Science of the Total Environment, 2021, 773, 145648.
doi: 10.1016/j.scitotenv.2021.145648 |
12 | 刘旻霞, 焦骄, 潘竟虎, 等. 青海省植被净初级生产力(NPP)时空格局变化及其驱动因素[J]. 生态学报, 2020, 40 (15): 5306- 5317. |
13 | 李登科, 王钊. 气候变化和人类活动对陕西省植被NPP影响的定量分析[J]. 生态环境学报, 2022, 31 (6): 1071- 1079. |
14 |
Jiang T , Wang X L , Afzal M M , et al. Vegetation productivity and precipitation use efficiency across the Yellow River Basin: spatial patterns and controls[J]. Remote Sensing, 2022, 14 (20): 5074.
doi: 10.3390/rs14205074 |
15 | 王金杰, 赵安周, 胡小枫. 京津冀植被净初级生产力时空分布及自然驱动因子分析[J]. 生态环境学报, 2021, 30 (6): 1158- 1167. |
16 | 王娟, 何慧娟, 董金芳, 等. 黄河流域植被净初级生产力时空特征及自然驱动因子[J]. 中国沙漠, 2021, 41 (6): 213- 222. |
17 |
Sen P K . Estimates of the regression coefficient based on Kendall′s tau[J]. Journal of the American Statistical Association, 1968, 63 (324): 1379- 1389.
doi: 10.1080/01621459.1968.10480934 |
18 |
Gocic M , Trajkovic S . Analysis of changes in meteorological variables using Mann-Kendall and Sen′s slope estimator statistical tests in Serbia[J]. Global and Planetary Change, 2013, 100, 172- 182.
doi: 10.1016/j.gloplacha.2012.10.014 |
19 | 徐宗学, 孟翠玲, 赵芳芳. 山东省近40 a来的气温和降水变化趋势分析[J]. 气象科学, 2007, 27 (4): 387- 393. |
20 | 蔡博峰, 于嵘. 基于遥感的植被长时序趋势特征研究进展及评价[J]. 遥感学报, 2009, 13 (6): 1177- 1186. |
21 | 汪攀, 刘毅敏. Sen′s斜率估计与Mann-Kendall法在设备运行趋势分析中的应用[J]. 武汉科技大学学报(自然科学版), 2014, 37 (6): 454-457, 472. |
22 | 陈彦光. 基于Matlab的地理数据分析[M]. 北京: 高等教育出版社, 2012. |
23 | 张翀, 任志远. 黄土高原地区植被覆盖变化的时空差异及未来趋势[J]. 资源科学, 2011, 33 (11): 2143- 2149. |
24 | 曲学斌, 王彦平, 高绍鑫, 等. 2000—2020年呼伦贝尔地区归一化植被指数时空变化及其对气候的响应[J]. 气象与环境学报, 2022, 38 (5): 57- 63. |
25 | 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72 (1): 116- 134. |
26 | 冯新灵, 冯自立, 罗隆诚, 等. 青藏高原冷暖气候变化趋势的R/S分析及Hurst指数试验研究[J]. 干旱区地理, 2008, 31 (2): 175- 181. |
27 | 焦珂伟, 高江波, 吴绍洪, 等. 植被活动对气候变化的响应过程研究进展[J]. 生态学报, 2018, 38 (6): 2229- 2238. |
28 | 洪乐乐, 沈艳, 马红彬, 等. 2000—2019年宁夏植被净初级生产力时空变化及其驱动因素[J]. 应用生态学报, 2022, 33 (10): 2769- 2776. |
29 | 尹振良, 冯起, 王凌阁, 等. 2000—2019年中国西北地区植被覆盖变化及其影响因子[J]. 中国沙漠, 2022, 42 (4): 11- 21. |
30 | 钟宇峰, 牛涛, 贾文贤, 等. 阅海湿地芦苇NPP遥感估算及其时空变化分析[J]. 气象与环境学报, 2021, 37 (6): 71- 78. |
31 | 徐勇, 卢云贵, 戴强玉, 等. 气候变化和土地利用变化对长江中下游地区植被NPP变化相对贡献分析[J]. 中国环境科学, 2023, 43 (9): 4988- 5000. |
32 | 陈广宏. 宁夏封山禁牧生态修复的实践与思考[J]. 中国水土保持, 2007, (5): 12- 14. |
33 | 邓景成, 高鹏, 穆兴民, 等. 黄土高原退耕还林工程对生态环境的影响及对策建议[J]. 水土保持研究, 2017, 24 (5): 63- 68. |
34 | 李梦华, 韩颖娟, 赵慧, 等. 基于地理探测器的宁夏植被覆盖度时空变化特征及其驱动因子分析[J]. 生态环境学报, 2022, 31 (7): 1317- 1325. |
35 | 李雨鸿, 陶苏林, 李荣平, 等. 辽宁省净初级生产力时空演变及其对地形因子的响应[J]. 气象与环境学报, 2021, 37 (5): 107- 112. |
36 | 戴声佩, 张勃, 王海军. 中国西北地区植被NDVI的时空变化及其影响因子分析[J]. 地球信息科学学报, 2010, 12 (3): 315- 321. |
37 | Gholkar M D , Goroshi S , Singh R P , et al. Influence of agricultural developments on net primary productivity (NPP) in the Semi-arid Region of India: a study using GloPEM model[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2014, XL-8, 725- 732. |
38 | 周蕾, 王绍强, 周涛, 等. 1901—2010年中国森林碳收支动态: 林龄的重要性[J]. 科学通报, 2016, 61 (18): 2064- 2073. |
39 | 张春华. 融合遥感和清查数据的中国森林碳收支模拟研究[D]. 南京: 南京大学, 2014. |
40 | 王雅婷, 同小娟, 管崇帆, 等. 中国典型人工林净初级生产力与林龄的关系[J]. 应用生态学报, 2023, 34 (8): 2017- 2028. |
41 | 李登秋, 张春华, 居为民, 等. 江西省森林净初级生产力动态变化特征及其驱动因子分析[J]. 植物生态学报, 2016, 40 (7): 643- 657. |
[1] | Xuebin QU,Dan LI,Ye TIAN,Yueji ZHAO,Lanbiao ZHANG,Yue DONG. Distribution of net ecosystem productivity in the Hulunbuir region from 2001 to 2021 and its relationship with temperature and precipitation [J]. Journal of Meteorology and Environment, 2024, 40(4): 100-106. |
[2] | Yong XIE,Shuang WANG,Hengyang WANG,Xu YANG,Fulong ZHANG,Ning WANG,Feng TAO. Spatio-temporal variation characteristics of NDVI in the three northeast provinces and their responses to climatic factors [J]. Journal of Meteorology and Environment, 2024, 40(1): 71-78. |
[3] | Xue-bin QU, Yan-ping WANG, Shao-xin GAO, Xu-ming ZHANG, Xiao-fei XIN, Meng-qi AO. Temporal and spatial change of NDVI and its response to climatic conditions in Hulun Buir region from 2000 to 2020 [J]. Journal of Meteorology and Environment, 2022, 38(5): 57-63. |
[4] | Hong-hai LIANG,Zhong-bao JIANG,Shi LIU,Shang-feng LI. Evaluation and analysis of meteorological conditions for winter tourism in Jilin province [J]. Journal of Meteorology and Environment, 2022, 38(5): 88-97. |
[5] | Xiao-dong ZHANG,Guan WANG,Xiu-ling WANG,Fen-e CUI,Yan-ping ZHENG. Characteristics of ozone pollution and its relationship with meteorological conditions from 2016 to 2019 in Tangshan [J]. Journal of Meteorology and Environment, 2022, 38(2): 62-69. |
[6] | Hui ZHANG,Chu WU,Jing-wei ZHANG,Xiao-ping LIN,Jia-quan LIANG,Su LIU,Yan-fang GUO,Cheng-liu LI. Characteristics of primary pollutants of air quality and their relationships with meteorological conditions in Heyuan [J]. Journal of Meteorology and Environment, 2022, 38(1): 40-47. |
[7] | Chuan-bo FU, Li DAN, Wen-shuai XU, Li-jun LIU. Characteristics of ozone pollution and synoptic classifications in Hainan province from 2015 to 2018 [J]. Journal of Meteorology and Environment, 2021, 37(6): 27-35. |
[8] | Feng-juan GUO,Chun-hua LI,Chun-ling DOU. Distribution of PM2.5 mass concentration over Karamay and its influencing factors [J]. Journal of Meteorology and Environment, 2020, 36(4): 52-58. |
[9] | Xiu-ling WANG,Jia-jia HUA,Xuan LI,Qian-jin MA,Guan WANG,Heng LI,Xiao-xia CAO. Meteorological conditions for formation and dissipation of PM2.5 heavy pollution in Tangshan from 2015 to 2017 [J]. Journal of Meteorology and Environment, 2020, 36(4): 45-51. |
[10] | YU Zhong-qi, MA Jing-hui, MAO Zhuo-cheng, CAO Yu, QU Yuan-hao, XU Jian-ming. Study on the meteorological conditions and synoptic classifications of O3 pollution in Shanghai in 2017 [J]. Journal of Meteorology and Environment, 2019, 35(6): 46-54. |
[11] | DU Qin-bo, WU Xiao-yan, ZHENG Su-fan, LI Yue-ying, CHEN Huan-huan, ZHANG Yu-feng. Effects of meteorological conditions on PM2.5 pollution in Shantou and the PM2.5 prediction [J]. Journal of Meteorology and Environment, 2019, 35(5): 70-77. |
[12] | LIN Yi, LI Qian, ZHANG Kai, LI Lan, QI Xin, LIN Zhong-guan, LIN Song, ZHANG Yun-fu. Effects of meteorological conditions on highway traffic safety in Liaoning province [J]. Journal of Meteorology and Environment, 2018, 34(3): 106-111. |
[13] | LIANG Bi-ling, ZHANG Li, LAI Xin, WEI Xiao-lin. Analysis of the characteristics of ozone pollution and its relationship with meteorological conditions in Shenzhen [J]. Journal of Meteorology and Environment, 2017, 33(1): 66-71. |
[14] | GU Ting-ting,LUO Yue-zhen,LIANG Zhuo-ran,PAN Ya-ying. Spatial and temporal chacracteristics of ice-freezing disasters and its relationship with meorological conditions from 1961 to 2010 in Zhejiang province [J]. Journal of Meteorology and Environment, 2014, 30(5): 120-124. |
[15] | WU Shan-shan, ZHANG Yi-zhi,HU Ju-fang. Climatic characteristics of haze days and its relationship with meteorological conditions over Jiangxi province [J]. Journal of Meteorology and Environment, 2014, 30(3): 71-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|