主办单位:中国气象局沈阳大气环境研究所
国际刊号:ISSN 1673-503X
国内刊号:CN 21-1531/P

气象与环境学报 ›› 2025, Vol. 41 ›› Issue (3): 18-28.doi: 10.3969/j.issn.1673-503X.2025.03.003

• 论文 • 上一篇    

基于机器学习的CMA-MESO模式气温预报订正方法研究

张会1,2,3,4,5, 陈军明2,6, 王亚强2,6, 马凤莲1,7, 周煜1,7, 卢宇坤4,5, 刘通4,5, 张良玉5   

  1. 1. 中国气象局雄安大气边界层重点开放实验室, 河北雄安新区 071700;
    2. 中国气象科学研究院灾害天气科学与技术 全国重点实验室, 北京 100081;
    3. 河北省气象与生态环境重点实验室, 河北石家庄 050021;
    4. 保定市生态气象 智能监测与服务重点实验室, 河北保定 071000;
    5. 保定市气象局, 河北保定 071000;
    6. 雄安气象人工 智能创新研究院, 河北雄安新区 070001;
    7. 雄安新区气象局, 河北雄安新区 071700
  • 收稿日期:2024-01-02 修回日期:2024-04-18 发布日期:2025-09-29
  • 通讯作者: 陈军明,男,研究员,E-mail:chenjm@cma.gov.cn。 E-mail:chenjm@cma.gov.cn
  • 作者简介:张会,女,1976年生,高级工程师,从事人工智能气象应用技术工作,E-mail:zhhqx2000@163.com。
  • 基金资助:
    中国气象局能力提升联合研究专项(24NLTSZD01)和河北省保定市科技局(2211ZG001)共同资助。

A study on the temperature forecast correction method of the CMA-MESO model based on machine learning

ZHANG Hui1,2,3,4,5, CHEN Junming2,6, WANG Yaqiang2,6, MA Fenglian1,7, ZHOU Yu1,7, LU Yukun4,5, LIU Tong4,5, ZHANG Liangyu5   

  1. 1. China Meteorological Administration Xiong'an Atmospheric Boundary Layer Key Laboratory, Xiong'an New Area 071700, China;
    2. State Key Laboratory of Severe Weather Meteorological Science and Technology, Beijing 100081, China;
    3. Hebei Key Laboratory of Meteorology and Ecological Environment, Shijiazhuang 050021, China;
    4. Baoding Key Laboratory of Intelligent Monitoring and Service on Ecological Meteorology, 071000, China;
    5. Baoding Meteorological Service, Baoding 071000, China;
    6. Xiong'an Institute of Meteorological Artificial Intelligence, Xiong'an New Area 070001, China;
    7. Xiong'an New Area Meteorological Service, Xiong'an New Area 071700, China
  • Received:2024-01-02 Revised:2024-04-18 Published:2025-09-29

摘要: 为提高雄安新区及上游保定地区气温预报准确性,利用CMA-MESO中尺度天气模式预报产品和地面观测数据,采用线性回归(Linear Regression)、长短期记忆全卷积网络(LSTM-FCN)和轻量级梯度提升机(LightGBM)等三种机器学习方法,围绕站点划分和特征因子选择设计4种订正方案开展气温预报研究。结果显示:采用分区站点模型优于全站点模型,LightGBM在全部方案中表现最优。特别是结合起报时刻前48 h的实况数据以及预报时刻前4·k的预报或实况要素(在预报时效0~36 h 内:0~12 h预报时效采用预报时刻前0~12 h的实况数据,k取0~12;13~36 h预报时效采用预报时刻前12h的预报数据,k固定为12)构建复合特征因子,LightGBM预测性能进一步提升。37个预报时效均在CMA-MESO模式预报结果基础上提高了精度,尤其在海拔超过1000 m的高原地区,均方根误差订正改善率超过30%。此外,在转折性天气背景下,这些方法依旧展现出较强的适应能力。从整体预报性能来看,LightGBM最优,均方根误差、平均绝对误差、准确率分别为1.86 ℃、1.42 ℃、75%,相比CMA-MESO预报,分别提高了36.5%、38.9% 和44.4%。

关键词: CMA-MESO, 预报订正, 机器学习, 气温预报

Abstract: To improve the accuracy of temperature forecasts in Xiong'an New Area and the upstream Baoding region,this study utilizes forecast products from the CMA-MESO mesoscale weather model and surface observation data.Three machine learning methods-Linear Regression,Long Short-Term Memory Fully Convolutional Network(LSTM-FCN),and Light Gradient Boosting Machine(LightGBM) are applied.Four forecast correction schemes are designed,focusing on station classification and feature selection.The results show that models using regionally divided stations outperform those using all stations collectively,and LightGBM delivers the best performance among all schemes.Specifically,when composite feature factors are constructed by combining observed data from 48 hours prior to the forecast start time and forecast or observed variables from 4·k hours before the forecast time(within the 0-36 h lead time:for lead times 0-12 h,actual observations from the 0-12 h period before the forecast time are used,with k ranging from 0-12; for lead times 13-36 h,forecast data from 12 h before the forecast time are used,with k fixed at 12),the predictive performance of LightGBM is further improved.For all 37 forecast lead times,the accuracy is improved over the original CMA-MESO model forecasts.Particularly in plateau regions with elevations above 1000 meters,the RMSE improvement exceeds 30%.Moreover,these methods continue to demonstrate strong adaptability under transitional weather conditions.In terms of overall forecasting performance,LightGBM proves to be the best,achieving a root mean square error(RMSE)of 1.86 ℃,a mean absolute error(MAE)of 1.42 ℃,and an accuracy of 75%,representing improvements of 36.5%,38.9%,and 44.4% respectively compared to the CMA-MESO forecast.

Key words: CMA-MESO, Forecast correction, Machine Learning, Temperature forecast

中图分类号: