[1] 杨振斌,薛桁,桑建国.复杂地形风能资源评估研究初探[J].太阳能学报,2004,25(6):744-749. [2] 李泽椿,朱蓉,何晓凤,等.风能资源评估技术方法研究[J].气象学报,2007,65(5):708-717. [3] Lewis J I.Wind energy in China:getting more from wind farms[J].Nature Energy,2016,1(6):16076. [4] Zhang D H,Wang J Q,Lin Y G,et al.Present situation and future prospect of renewable energy in China[J].Renewable and Sustainable Energy Reviews,2017,76:865-871. [5] Hua Y P,Oliphant M,Hu E J.Development of renewable energy in Australia and China:a comparison of policies and status[J].Renewable Energy,2016,85:1044-1051. [6] Duan H B.Emissions and temperature benefits:the role of wind power in China[J].Environmental Research,2017,152:342-350. [7] Zheng J Q,Du J,Wang B H,et al.A hybrid framework for forecasting power generation of multiple renewable energy sources[J].Renewable and Sustainable Energy Reviews,2023,172:113046. [8] Atuahene S,Bao Y K,Ziggah Y Y,et al.Short-term electric power forecasting using dual-stage hierarchical wavelet-Particle swarm optimization-Adaptive neuro-fuzzy inference system PSO-ANFIS approach based on climate change[J].Energies,2018,11(10):2822. [9] 李得勤,周晓珊,陈力强,等.基于数值模式的风速预报方法研究[J].太阳能学报,2012,33(10):1683-1689. [10] 孙川永,陶树旺,罗勇,等.高分辨率中尺度数值模式在风电场风速预报中的应用[J].太阳能学报,2009,30(8):1097-1099. [11] 柳艳香,陶树旺,张秀芝.风能预报方法研究进展[J].气候变化研究进展,2008,4(4):209-214. [12] Cali U,Sharma V.Short-term wind power forecasting using long-short term memory based recurrent neural network model and variable selection[J].International Journal of Smart Grid and Clean Energy,2019,8(2):103-110. [13] Wang H Z,Lei Z X,Zhang X,et al.A review of deep learning for renewable energy forecasting[J].Energy Conversion and Management,2019,198:111799. [14] Bouabdallaoui D,Haidi T,Elmariami F,et al.Application of four machine-learning methods to predict short-horizon wind energy[J].Global Energy Interconnection,2023,6(6):726-737. [15] Demolli H,Dokuz A S,Ecemis A,et al.Wind power forecasting based on daily wind speed data using machine learning algorithms[J].Energy Conversion and Management,2019,198:111823. [16] Lahouar A,Slama J B H.Hour-ahead wind power forecast based on random forests[J].Renewable Energy,2017,109:529-541. [17] Hong T,Pinson P,Fan S.Global energy forecasting competition 2012[J].International Journal of Forecasting,2014,30(2):357-363. [18] Hong T,Pinson P,Fan S,et al.Probabilistic energy forecasting:global energy forecasting competition 2014 and beyond[J].International Journal of forecasting,2016,32(3):896-913. [19] Chen T Q,Guestrin C.Xgboost:a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Francisco:ACM,2016:785-794. [20] Demolli H,Dokuz AS,Ecemis A,Gokcek M. Wind power forecasting based on daily wind speed data using machine learning algorithms[J].Energy Conversion and Management,2019,198,111823. |