主办单位:中国气象局沈阳大气环境研究所
国际刊号:ISSN 1673-503X
国内刊号:CN 21-1531/P

气象与环境学报 ›› 2025, Vol. 41 ›› Issue (3): 36-43.doi: 10.3969/j.issn.1673-503X.2025.03.005

• 论文 • 上一篇    

XGBoost方法在风电功率预报中的应用

段云霞1,2, 李忠娴3, 李得勤1,4,5   

  1. 1. 中国气象局东北冷涡研究重点开放实验室, 辽宁沈阳 110166;
    2. 沈阳市气象局, 辽宁沈阳 110168;
    3. 辽宁省气象局财务核算中心, 辽宁沈阳 110166;
    4. 中国气象局沈阳大气环境研究所, 辽宁沈阳 110166;
    5. 沈阳农业与生态气象研究院, 辽宁沈阳 110166
  • 收稿日期:2024-06-12 修回日期:2025-02-06 发布日期:2025-09-29
  • 通讯作者: 李得勤,男,正高级工程师,E-mail:Lewen05@hotmail.com。 E-mail:Lewen05@hotmail.com
  • 作者简介:段云霞,女,1983年生,高级工程师,主要从事天气预报和灾害性天气机理研究工作,E-mail:yxduan@163.com。
  • 基金资助:
    国家自然科学基金(42275171)资助。

Application of the XGBoost method in wind power forecasting

Duan Yunxia1,2, Li Zhongxian3, Li Deqin1,4,5   

  1. 1. Key Laboratory of Northeast Cold Vortex Research China Meteorological Administration, Shenyang 110166, China;
    2. Shenyang Meteorological Service, Shenyang 110168, China;
    3. Financial Accounting Center of Liaoning Meteorological Service, Shenyang 110166, China;
    4. Institute of Atmospheric Environment, China Meteorological Administration, Shenyang 110166, China;
    5. Shenyang Institute of Agricultural and Ecological Meteorology, Shenyang 110166, China
  • Received:2024-06-12 Revised:2025-02-06 Published:2025-09-29

摘要: 使用2014年全球能源预测竞赛(GEFCom2014)风电功率观测和训练数据,开展基于XGBoost机器学习方法在风电功率预报中的应用研究。为考察不同变量数值分布对机器学习的可能影响,分别使用纬向风和经向风,以及风速和风向作为特征变量建立风电功率预报模型,并进行预报试验。结果表明:实际观测功率和数值预报风速的分布虽然整体符合风能功率曲线,但离散度过大。纬向风和经向风与风功率的相关性虽然不高,但作为XGBoost的训练特征变量,最终建立的模型具有较好的预报效果,与直接使用风速和风向建立的模型预报性能接近。模型预报结果呈现对风能峰值低估,以及低功率高估的情况,这可能与数值模式预报的风速存在误差有关。

关键词: 风电功率, 机器学习, XGBoost, 风能预报

Abstract: Using the wind power observation and training data from the 2014 Global Energy Forecasting Competition (GEFCom2014),a study on the application of the XGBoost machine learning method in wind power forecasting was conducted.To assess the potential influence of variable distribution on machine learning models,wind power forecasting models were developed using zonal wind and meridional wind,as well as wind speed and wind direction as feature variables.Forecast experiments show that although the distributions of actual observed wind power and numerically forecasted wind speed generally follow the wind power curve,the high degree of dispersion is a major factor contributing to the uncertainty in wind power forecasts.While the correlation between zonal/meridional winds and wind power is not high,models trained with these features using XGBoost still achieve good forecasting performance comparable to those built directly with wind speed and wind direction.The forecast results of the models tend to underestimate wind power peaks and overestimate low power values,which may be attributed to errors in numerically forecasted wind speed.

Key words: Wind power, Machine learning, XGBoost, Wind energy forecasting

中图分类号: