气象与环境学报 ›› 2023, Vol. 39 ›› Issue (3): 140-153.doi: 10.3969/j.issn.1673-503X.2023.03.017
李晓岚1,2,3,4(),马雁军1,*(
),王扬锋1,赵胡笳1,洪也1,刘宁微1,张云海1
收稿日期:
2022-02-11
出版日期:
2023-06-28
发布日期:
2023-07-25
通讯作者:
马雁军
E-mail:leexl.ouc@163.com;mayanjun0917@163.com
作者简介:
李晓岚, 女, 1986年生, 研究员, 主要从事大气边界层与大气湍流、大气环境研究, E-mail: 基金资助:
Xiao-lan LI1,2,3,4(),Yan-jun MA1,*(
),Yang-feng WANG1,Hu-jia ZHAO1,Ye HONG1,Ning-wei LIU1,Yun-hai ZHANG1
Received:
2022-02-11
Online:
2023-06-28
Published:
2023-07-25
Contact:
Yan-jun MA
E-mail:leexl.ouc@163.com;mayanjun0917@163.com
摘要:
基于国家重点研发计划专项课题“哈长城市群大气复合污染立体监测技术体系”研究成果, 回顾了近年来在我国东北城市群大气污染立体监测、污染特征及成因机制研究方面取得的主要进展; 介绍了东北地区大气污染立体观测网的布局和建设, 总结了大气污染物时空分布特征和大气气溶胶光化学特性, 分析了大气边界层结构特征及其物理过程对大气污染生消的影响。最后指出东北城市群还需要加强PM2.5和臭氧污染的协同控制以及气溶胶—边界层反馈机制对大气污染影响等方面的研究。
中图分类号:
李晓岚,马雁军,王扬锋,赵胡笳,洪也,刘宁微,张云海. 东北城市群大气污染立体观测与研究进展[J]. 气象与环境学报, 2023, 39(3): 140-153.
Xiao-lan LI,Yan-jun MA,Yang-feng WANG,Hu-jia ZHAO,Ye HONG,Ning-wei LIU,Yun-hai ZHANG. Review on three-dimensional monitoring and research progress on air pollution in urban agglomerations of Northeast China[J]. Journal of Meteorology and Environment, 2023, 39(3): 140-153.
表1
辽中城市群大气环境立体观测网主要观测仪器和观测内容"
站点 | 观测仪器 | 仪器型号 | 起始年份 | 观测内容 |
沈阳 鞍山 抚顺 本溪 | 环境颗粒物分析仪 | GRIMM-180 | 2006 | PM1、PM2.5和PM10质量浓度 |
黑碳分析仪 | AE-31 | 2006 | 黑碳质量浓度 | |
反应性气体分析仪 | 42c, 43c/42i, 43i | 2006/2009 | SO2和NO2质量浓度 | |
反应性气体分析仪 | 48i, 49i | 2009 | CO和O3质量浓度 | |
能见度监测仪 | FD12 | 2009 | 水平大气能见度 | |
太阳光度计 | CE318 | 2009 | 气溶胶光学厚度、相函数、单词散射反照率、有效半径和体积浓度 | |
沈阳 | 颗粒物监测仪 | FH62C14 | 2009 | PM10和PM2.5质量浓度 |
在线气体组分及气溶胶监测系统 | MARGA | 2014 | PM2.5中的硫酸根、硝酸根、铵根等8种阴阳离子质量浓度 | |
单波段大气积分浊度仪 | Aurora-1000 | 2014 | 颗粒物光散射系数 | |
大气颗粒物监测激光雷达 | AGHJ-I-LIDAR | 2015 | 气溶胶消光系数廓线 | |
过氧乙酰硝酸酯监测仪 | PAN | 2015 | 过氧乙酰硝酸酯(PAN)的质量浓度 | |
有机碳/元素碳分析仪 | Sunset RT-4 | 2015 | PM2.5中有机碳/元素碳(OC/EC)的质量浓度 | |
四分量辐射仪 | NR-Lite | 2018 | 向上和向下的长短波辐射 | |
三波段大气积分浊度仪 | Aurora-3000 | 2020 | 颗粒物光散射系数 | |
开路式CO2/H2O气体分析仪 | LICOR-7500 | 2020 | 脉动量(u、v、w、H2O、CO2) | |
大气挥发性有机物在线监测系统 | AQMS-900VCM | 2020 | 挥发性有机物(VOC)浓度 | |
微波辐射计 | TK001 | 2020 | 气温、相对湿度、水汽密度和液态水含量垂直廓线 |
表2
2017—2019年秋冬季哈长城市群大气污染立体观测网主要观测仪器和观测内容"
站点类型 | 站点位置 | 观测仪器/型号 | 观测内容 |
城市站 | 吉林长春 (北海超级站) | 1.移动式空气质量监测仪/青岛和诚H6 .小流量采样器/青岛和诚HC-1010 3.大流量采样器/丹东百特BTPM-HS10 4.气溶胶化学成分组成监测仪/AIM3000T 5.有机碳/元素碳分析仪/RT-4 6.黑碳气溶胶监测仪/AE-31 | 1.PM10、PM2.5、SO2、NO2、CO和O3质量浓度 2.PM2.5滤膜采样 3.PM10滤膜采样 4.水溶性离子及NH3, HNO3等气体成分浓度 5.PM2.5中的有机碳和元素碳质量浓度 6.黑碳气溶胶质量浓度 |
吉林松原 | 1.移动式空气质量监测仪/青岛和诚H6 2.小流量采样器/丹东百特BTPM-HS10 | 1.PM10、PM2.5、SO2、NO2、CO和O3质量浓度 2.PM2.5滤膜采样 | |
黑龙江哈尔滨香坊区 | 1.移动式空气质量监测仪/青岛和诚H6 2.小流量采样器/青岛和诚HC-1010 3.大流量采样器/丹东百特BTPM-HS10 | 1.PM10、PM2.5、SO2、NO2、CO和O3质量浓度 2.PM2.5滤膜采样 3.PM10滤膜采样 | |
黑龙江大庆 | 1.移动式空气质量监测仪/青岛和诚H6 2.小流量采样器/青岛和诚HC-1010 3.大流量采样器/丹东百特BTPM-HS10 | 1.PM10、PM2.5、SO2、NO2、CO和O3质量浓度 2.PM2.5滤膜采样 3.PM10滤膜采样 | |
郊区站 | 吉林长春 东北地理所 | 1.移动式空气质量监测仪/青岛和诚H6 2.小流量采样器/青岛和诚HC-1010 3.大流量采样器/丹东百特BTPM-HS10 | 1.PM10、PM2.5、SO2、NO2、CO和O3质量浓度 2.PM2.5滤膜采样 3.PM10滤膜采样 |
吉林永吉 | 1.移动式空气质量监测仪/青岛和诚H6 2.小流量采样器/青岛和诚HC-1010 | 1.PM10、PM2.5、SO2、NO2、CO和O3质量浓度 2.PM2.5滤膜采样 | |
黑龙江哈尔滨松北区 | 1.移动式空气质量监测仪/青岛和诚H6 2.小流量采样器/青岛和诚HC-1010 3.大流量采样器/丹东百特BTPM-HS10 4.颗粒物监测激光雷达/深圳大舜DSL-A 5.微波辐射计/MP-3000A | 1.PM10、PM2.5、SO2、NO2、CO和O3质量浓度 2.PM2.5滤膜采样 3.PM10滤膜采样 4.气溶胶消光系数廓线 5.气温、相对湿度、水汽密度和液态水含量廓线 | |
黑龙江绥化 | 1.移动式空气质量监测仪/青岛和诚H6 2.小流量采样器/青岛和诚HC-1010 | 1.PM10、PM2.5、SO2、NO2、CO和O3质量浓度 2.PM2.5滤膜采样 | |
农村站 | 吉林榆树 | 1.移动式空气质量监测仪/青岛和诚H6 2.小流量采样器/青岛和诚HC-1010 3.大流量采样器/丹东百特BTPM-HS10 4.颗粒物监测激光雷达/深圳大舜DSL-A 5.微波辐射计/QFW-6000 | 1.PM10、PM2.5、SO2、NO2、CO和O3质量浓度 2.PM2.5滤膜采样 3.PM10滤膜采样 4.气溶胶消光系数廓线 5.气温、相对湿度、水汽密度和液态水含量廓线 |
吉林四平 | 1.移动式空气质量监测仪/青岛和诚H6 2.小流量采样器/青岛和诚HC-1010 3.颗粒物监测激光雷达/深圳大舜DSL-A 4.微波辐射计/MWP967KV | 1.PM10、PM2.5、SO2、NO2、CO和O3质量浓度 2.PM2.5滤膜采样 3.气溶胶消光系数廓线 4.气温、相对湿度、水汽密度和液态水含量廓线 | |
黑龙江肇东 | 1.移动式空气质量监测仪/青岛和诚H6 2.小流量采样器/青岛和诚HC-1010 | 1.PM10、PM2.5、SO2、NO2、CO和O3质量浓度 2.PM2.5滤膜采样 | |
黑龙江宾县 | 1.移动式空气质量监测仪/青岛和诚H6 2.小流量采样器/青岛和诚HC-1010 3.大流量采样器/丹东百特BTPM-HS10 | 1.PM10、PM2.5、SO2、NO2、CO和O3质量浓度 2.PM2.5滤膜采样 3.PM10滤膜采样 | |
背景站 | 吉林岗子 | 1.移动式空气质量监测仪/青岛和诚H6 2.小流量采样器/青岛和诚HC-1010 | 1.PM10、PM2.5、SO2、NO2、CO和O3质量浓度 2.PM2.5滤膜采样 |
1 |
Shao M , Tang X Y , Zhang Y H , et al. City clusters in China: air and surface water pollution[J]. Frontiers in Ecology and the Environment, 2006, 4 (7): 353- 361.
doi: 10.1890/1540-9295(2006)004[0353:CCICAA]2.0.CO;2 |
2 |
Zhang H L , Wang Y G , Hu J L , et al. Relationships between meteorological parameters and criteria air pollutants in three megacities in China[J]. Environmental Research, 2015, 140, 242- 254.
doi: 10.1016/j.envres.2015.04.004 |
3 | 陈卫卫, 刘阳, 吴雪伟, 等. 东北区域空气质量时空分布特征及重度污染成因分析[J]. 环境科学, 2019, 40 (11): 4810- 4823. |
4 |
Li X L , Wang Y F , Shen L D , et al. Characteristics of boundary layer structure during a persistent haze event in the central Liaoning City Cluster, Northeast China[J]. Journal of Meteorological Research, 2018, 32 (2): 302- 312.
doi: 10.1007/s13351-018-7053-6 |
5 |
Chen Z H , Cheng S Y , Li J B , et al. Relationship between atmospheric pollution processes and synoptic pressure patterns in northern China[J]. Atmospheric Environment, 2008, 42 (24): 6078- 6087.
doi: 10.1016/j.atmosenv.2008.03.043 |
6 | Liu S H , Liu Z X , Li J , et al. Numerical simulation for the coupling effect of local atmospheric circulations over the area of Beijing, Tianjin and Hebei province[J]. Science in China Series D: Earth Science, 2019, 52 (3): 382- 392. |
7 | Zhu J L , Liao H , Li J P . Increases in aerosol concentrations over eastern China due to the decadal-scale weakening of the East Asian summer monsoon[J]. Geophysical Research Letters, 2012, 39 (9): L09809. |
8 |
Hu X M , Ma Z Q , Lin W L , et al. Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain: a case study[J]. Science of the Total Environment, 2014, 499, 228- 237.
doi: 10.1016/j.scitotenv.2014.08.053 |
9 |
Tang G Q , Zhang J Q , Zhu X W , et al. Mixing layer height and its implications for air pollution over Beijing, China[J]. Atmospheric Chemistry and Physics, 2016, 16 (4): 2459- 2475.
doi: 10.5194/acp-16-2459-2016 |
10 |
Wei W , Zhang H S , Wu B G , et al. Intermittent turbulence contributes to vertical dispersion of PM2.5 in the North China Plain: cases from Tianjin[J]. Atmospheric Chemistry and Physics, 2018, 18 (17): 12953- 12967.
doi: 10.5194/acp-18-12953-2018 |
11 |
Li X L , Hu X M , Ma Y J , et al. Impact of planetary boundary layer structure on the formation and evolution of air-pollution episodes in Shenyang, Northeast China[J]. Atmospheric Environment, 2019, 214, 116850.
doi: 10.1016/j.atmosenv.2019.116850 |
12 |
Yang T , Gbaguidi A , Yan P Z , et al. Model elucidating the sources and formation mechanisms of severe haze pollution over Northeast mega-city cluster in China[J]. Environmental Pollution, 2017, 230, 692- 700.
doi: 10.1016/j.envpol.2017.06.007 |
13 |
Ma S Q , Chen W W , Zhang S C , et al. Characteristics and cause analysis of heavy haze in Changchun city in Northeast China[J]. Chinese Geographical Science, 2017, 27 (6): 989- 1002.
doi: 10.1007/s11769-017-0922-6 |
14 |
Miao Y C , Guo J P , Liu S H , et al. Impacts of synoptic condition and planetary boundary layer structure on the trans-boundary aerosol transport from Beijing-Tianjin-Hebei region to northeast China[J]. Atmospheric Environment, 2018, 181, 1- 11.
doi: 10.1016/j.atmosenv.2018.03.005 |
15 |
Li X L , Wang Y F , Zhao H J , et al. Characteristics of pollutants and boundary layer structure during two haze events in summer and autumn 2014 in Shenyang, Northeast China[J]. Aerosol and Air Quality Research, 2018, 18 (2): 386- 396.
doi: 10.4209/aaqr.2017.03.0100 |
16 |
Zhao H J , Che H Z , Zhang L , et al. How aerosol transport from the North China plain contributes to air quality in northeast China[J]. Science of the Total Environment, 2020, 738, 139555.
doi: 10.1016/j.scitotenv.2020.139555 |
17 |
Chen W W , Zhang S C , Tong Q S , et al. Regional characteristics and causes of haze events in Northeast China[J]. Chinese Geographical Science, 2018, 28 (5): 836- 850.
doi: 10.1007/s11769-018-0965-3 |
18 |
Li R M , Chen W W , Xiu A J , et al. A comprehensive inventory of agricultural atmospheric particulate matters (PM10 and PM2.5) and gaseous pollutants (VOCs, SO2, NH3, CO, NOx and HC) emissions in China[J]. Ecological Indicators, 2019, 107, 105609.
doi: 10.1016/j.ecolind.2019.105609 |
19 |
Li X L , Ma Y J , Wang Y F , et al. Temporal and spatial analyses of particulate matter (PM10 and PM2.5) and its relationship with meteorological parameters over an urban city in northeast China[J]. Atmospheric Research, 2017, 198, 185- 193.
doi: 10.1016/j.atmosres.2017.08.023 |
20 |
Li X L , Hu X M , Shi S Y , et al. Spatiotemporal variations and regional transport of air pollutants in two urban agglomerations in Northeast China Plain[J]. Chinese Geographical Science, 2019, 29 (6): 917- 933.
doi: 10.1007/s11769-019-1081-8 |
21 |
Li L G , Zhao Z Q , Wang H B , et al. Concentrations of four major air pollutants among ecological functional zones in Shenyang, Northeast China[J]. Atmosphere, 2020, 11 (10): 1070.
doi: 10.3390/atmos11101070 |
22 |
Liu N W , Ren W H , Li X L , et al. Distribution and urban-suburban differences in ground-level ozone and its precursors over Shenyang, China[J]. Meteorology and Atmospheric Physics, 2019, 131 (3): 669- 679.
doi: 10.1007/s00703-018-0598-1 |
23 |
Gao C , Xiu A , Zhang X L , et al. Spatiotemporal characteristics of ozone pollution and policy implications in Northeast China[J]. Atmospheric Pollution Research, 2020, 11 (2): 357- 369.
doi: 10.1016/j.apr.2019.11.008 |
24 | 马雁军, 赵胡笳, 刘宇飞, 等. 中国东北地区重污染事件气溶胶浓度变化与天气形势分析[J]. 气象与环境学报, 2021, 37 (5): 13- 19. |
25 |
Zhao H J , Che H Z , Zhang X Y , et al. Aerosol optical properties over urban and industrial region of Northeast China by using ground-based sun-photometer measurement[J]. Atmospheric Environment, 2013, 75, 270- 278.
doi: 10.1016/j.atmosenv.2013.04.048 |
26 |
Zhao H J , Che H Z , Wang Y Q , et al. Investigation of the optical properties of aerosols over the coastal region at Dalian, Northeast China[J]. Atmosphere, 2016, 7 (8): 103.
doi: 10.3390/atmos7080103 |
27 |
Zhao H J , Che H Z , Wang Y Q , et al. Aerosol vertical distribution and typical air pollution episodes over northeastern China during 2016 analyzed by ground-based lidar[J]. Aerosol and Air Quality Research, 2018, 18 (4): 918- 937.
doi: 10.4209/aaqr.2017.09.0327 |
28 | Zhao H J , Che H Z , Xia X G , et al. Multiyear ground-based measurements of aerosol optical properties and direct radiative effect over different surface types in Northeastern China[J]. Journal of Geophysical Research: Atmospheres, 2018, 123 (24): 13887- 13916. |
29 |
Zhao H J , Ma Y J , Wang Y Q , et al. Aerosol and gaseous pollutant characteristics during the heating season (winter-spring transition) in the Harbin-Changchun megalopolis, northeastern China[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2019, 188, 26- 43.
doi: 10.1016/j.jastp.2019.03.001 |
30 |
Zhao H J , Che H Z , Gui K , et al. Interdecadal variation in aerosol optical properties and their relationships to meteorological parameters over northeast China from 1980 to 2017[J]. Chemosphere, 2020, 247, 125737.
doi: 10.1016/j.chemosphere.2019.125737 |
31 |
Ma Y J , Zhao H J , Dong Y S , et al. Comparison of two air pollution episodes over Northeast China in winter 2016/17 using ground-based lidar[J]. Journal of Meteorological Research, 2018, 32 (2): 313- 323.
doi: 10.1007/s13351-018-7047-4 |
32 | 洪也, 周德平, 马雁军, 等. 沈阳市夏秋季节大气细颗粒物元素浓度及分布特征[J]. 中国环境科学, 2010, 30 (7): 972- 979. |
33 | 洪也, 马雁军, 韩文霞, 等. 沈阳市冬季大气颗粒物元素浓度及富集因子的粒径分布[J]. 环境科学学报, 2011, 31 (11): 2336- 2346. |
34 |
Hong Y , Li C L , Li X L , et al. Analysis of compositional variation and source characteristics of water-soluble ions in PM2.5 during several winter-haze pollution episodes in Shenyang, China[J]. Atmosphere, 2018, 9 (7): 280.
doi: 10.3390/atmos9070280 |
35 |
Hong Y , Ma Y J , Sun J Y , et al. Water-soluble ion components of PM10 during the winter-spring season in a typical polluted city in Northeast China[J]. Environmental Science and Pollution Research, 2019, 26 (7): 7055- 7070.
doi: 10.1007/s11356-019-04199-x |
36 |
Zhang M D , Zhang S C , Bao Q Y , et al. Temporal variation and source analysis of carbonaceous aerosol in industrial cities of Northeast China during the Spring Festival: the case of Changchun[J]. Atmosphere, 2020, 11 (9): 991.
doi: 10.3390/atmos11090991 |
37 | 马雁军, 李晓岚, 张云海, 等. 2016年12月沈阳地区一次持续性重污染天气成因机制分析[J]. 环境化学, 2020, 39 (12): 3346- 3352. |
38 |
Zhao H J , Che H Z , Xia X G , et al. Climatology of mixing layer height in China based on multi-year meteorological data from 2000 to 2013[J]. Atmospheric Environment, 2019, 213, 90- 103.
doi: 10.1016/j.atmosenv.2019.05.047 |
39 |
Li X L , Ma Y J , Wang Y F , et al. Vertical distribution of particulate matter and its relationship with planetary boundary layer structure in Shenyang, Northeast China[J]. Aerosol and Air Quality Research, 2019, 19 (11): 2464- 2476.
doi: 10.4209/aaqr.2019.06.0311 |
40 | 马雁军, 刘宁微, 王扬锋, 等. 辽宁中部城市群大气环境研究进展[J]. 气象科技进展, 2012, 2 (2): 19- 24. |
41 |
Yan P , Pan X L , Tang J , et al. Hygroscopic growth of aerosol scattering coefficient: a comparative analysis between urban and suburban sites at winter in Beijing[J]. Particuology, 2009, 7 (1): 52- 60.
doi: 10.1016/j.partic.2008.11.009 |
42 | Tijjani B I , Uba S . The effect of hygroscopic growth on urban aerosols[J]. Advances in Physics Theories and Applications, 2013, 25, 58- 75. |
43 |
Huang R J , Zhang Y L , Bozzetti C , et al. High secondary aerosol contribution to particulate ]pollution during haze events in China[J]. Nature, 2014, 514 (7521): 218- 222.
doi: 10.1038/nature13774 |
44 | Wang G H , Zhang R Y , Gomez M E , et al. Persistent sulfate formation from London Fog to Chinese haze[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113 (48): 13630- 13635. |
45 |
Zhang K , Wang D F , Bian Q G , et al. Tethered balloon-based particle number concentration, and size distribution vertical profiles within the lower troposphere of Shanghai[J]. Atmospheric Environment, 2017, 154, 141- 150.
doi: 10.1016/j.atmosenv.2017.01.025 |
46 |
Xu X , Lin W , Wang T , et al. Long-term trend of surface ozone at a regional background station in eastern China 1991-2006:enhanced variability[J]. Atmospheric Chemistry and Physics, 2008, 8 (10): 2595- 2607.
doi: 10.5194/acp-8-2595-2008 |
47 |
Deng X J , Li F , Li Y H , et al. Vertical distribution characteristics of PM in the surface layer of Guangzhou[J]. Particuology, 2015, 20, 3- 9.
doi: 10.1016/j.partic.2014.02.009 |
48 |
Wang S H , Welton E J , Holben B N , et al. Vertical distribution and columnar optical properties of springtime biomass-burning aerosols over northern Indochina during 2014 7-SEAS Campaign[J]. Aerosol and Air Quality Research, 2015, 15 (5): 2037- 2050.
doi: 10.4209/aaqr.2015.05.0310 |
49 |
Lu S J , Wang D S , Wang Z Y , et al. Investigating the role of meteorological factors in the vertical variation in PM2.5 by unmanned aerial vehicle measurement[J]. Aerosol and Air Quality Research, 2019, 19 (7): 1493- 1507.
doi: 10.4209/aaqr.2018.07.0266 |
50 |
Zhang H S , Zhang X Y , Li Q H , et al. Research progress on estimation of the atmospheric boundary layer height[J]. Journal of Meteorological Research, 2020, 34 (3): 482- 498.
doi: 10.1007/s13351-020-9910-3 |
51 |
Miao Y C , Li J , Miao S G , et al. Interaction between planetary boundary layer and PM2.5 pollution in megacities in China: a review[J]. Current Pollution Reports, 2019, 5 (4): 261- 271.
doi: 10.1007/s40726-019-00124-5 |
52 |
Zhang Q , Zhang J , Qiao J , et al. Relationship of atmospheric boundary layer depth with thermodynamic processes at the land surface in arid regions of China[J]. Science China Earth Sciences, 2011, 54 (10): 1586- 1594.
doi: 10.1007/s11430-011-4207-0 |
53 |
Miao Y C , Liu S H , Guo J P , et al. Unraveling the relationships between boundary layer height and PM2.5 pollution in China based on four-year radiosonde measurements[J]. Environmental Pollution, 2018, 243, 1186- 1195.
doi: 10.1016/j.envpol.2018.09.070 |
54 | Pan L , Xu J M , Tie X X , et al. Long-term measurements of planetary boundary layer height and interactions with PM2.5 in Shanghai, China[J]. Atmospheric Pollution Research, 2019, 10 (3): 989- 996. |
55 | 刘建, 范绍佳, 吴兑, 等. 珠江三角洲典型灰霾过程的边界层特征[J]. 中国环境科学, 2015, 35 (6): 1664- 1674. |
56 | 桂海林, 江琪, 康志明, 等. 2016年冬季北京地区一次重污染天气过程边界层特征[J]. 中国环境科学, 2019, 39 (7): 2739- 2747. |
57 | Klein P M , Hu X M , Xue M . Impacts of mixing processes in nocturnal atmospheric boundary layer on urban ozone concentrations[J]. Boundary-Layer Meteorology, 2014, 150 (1): 107- 130. |
58 | Hu J , Li Y C , Zhao T L , et al. An important mechanism of regional O3 transport for summer smog over the Yangtze River Delta in eastern China[J]. Atmospheric Chemistry and Physics, 2018, 18 (22): 16239- 16251. |
[1] | 张舒,阙粼婧,王莹,王蕾,栾晨,孙兆彬. 2014—2017年哈尔滨地区供暖前与供暖期空气污染特征分析[J]. 气象与环境学报, 2022, 38(6): 81-88. |
[2] | 肖袁俊,李保山,宋文丹,程勇翔,黄敬峰. 1998—2016年中国PM2.5浓度变化对气温的影响研究[J]. 气象与环境学报, 2022, 38(3): 85-92. |
[3] | 徐家平, 赵天良, 陈燕, 白永清, 孙晓芸, 王淞, 曹畅. 基于旋翼无人机的大气边界层环境气象垂直观测及订正方法的研究[J]. 气象与环境学报, 2022, 38(3): 101-111. |
[4] | 高睿娜,孙银川,左河疆,高娜,王岱. 银川市主要污染物变化特征及其关系研究[J]. 气象与环境学报, 2022, 38(1): 33-39. |
[5] | 代玉田, 杨学斌. 2018年冬季鲁西北大气污染特征及影响因子分析[J]. 气象与环境学报, 2021, 37(4): 40-47. |
[6] | 王博妮,张雪蓉,孙明,田力,濮梅娟. 江苏地区雨雾天气特征及成因研究[J]. 气象与环境学报, 2020, 36(1): 58-66. |
[7] | 安林昌, 张恒德, 李凯飞. 降雨天气对大气污染物浓度的影响分析[J]. 气象与环境学报, 2018, 34(3): 58-70. |
[8] | 李红斌, 傅瑜, 张靖萱, 赵繁盛, 盖晓波, 何阳. 大连市冬季大气污染数值模拟及其对人工增雨(雪)作业的指示作用[J]. 气象与环境学报, 2017, 33(5): 10-16. |
[9] | 杨浩, 白永清, 刘琳, 许冠宇, 王玲玲, 孔海江. 基于轨迹聚类河南地区大气污染过程空气输送通道研究[J]. 气象与环境学报, 2017, 33(4): 29-39. |
[10] | 李倩, 杨旭, 马梁臣, 张俊茹, 孙克敏, 邢丽元. 长春市酸雨变化特征及其影响因素分析[J]. 气象与环境学报, 2017, 33(4): 48-55. |
[11] | 宋桂英, 江靖, 狄慧, 陈云刚. APEC会议期间呼和浩特市大气污染防控与气象条件分析[J]. 气象与环境学报, 2017, 33(2): 63-69. |
[12] | 胡春梅, 刘德, 陈道劲. 重庆地区两次连续空气污染天气过程对比分析[J]. 气象与环境学报, 2016, 32(1): 25-32. |
[13] | 黄容 郭丽娜 马艳 于粟冰. 2006—2012年青岛市空气质量与气象条件的关系[J]. 气象与环境学报, 2015, 31(2): 37-43. |
[14] | 杨俊梅, 李培仁, 李义宇, 封秋娟, 李军霞, 韩永翔, 朱彬. 南京北郊 O3、NO2和 SO2变化特征分析[J]. 气象与环境学报, 2014, 30(3): 66-70. |
[15] | 胡琳,曹红利, 张文静,王琦,穆军 . 西安市环境空气质量变化特征及其与气象条件的关系[J]. 气象与环境学报, 2013, 29(6): 150-153. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|