[1] Cheng W Y Y,Steenburgh W J.Strengths and weaknesses of MOS,running-mean bias removal,and Kalman filter techniques for improving model forecasts over the western United States[J].Weather and Forecasting,2007,22(6):1304-1318. [2] Rudack D E,Ghirardelli J E.A comparative verification of localized aviation model output statistics program (LAMP) and numerical weather prediction (NWP) model forecasts of ceiling height and visibility[J].Weather and Forecasting,2010,25(4):1161-1178. [3] 王佳津,王彬雁,肖递祥,等.基于目标对象检验法的四川省两种数值模式暴雨预报对比分析[J].气象与环境学报,2023,39(6):44-50. [4] 吴迪,田宏强,刘辉,等.基于相似卡尔曼滤波的安徽省WRF模式风速预报订正[J].气象与环境学报,2023,39(4):31-37. [5] 金巍,刘卫华,高凌峰,等.辽宁地区ECMWF模式气温预报检验及误差订正研究[J].气象与环境学报,2020,36(6):50-57. [6] 王涛,王乙舒,赵春雨,等.基于机器学习方法的辽宁省初霜冻日期预测模型研究[J].气象与环境学报,2022,38(4):47-56. [7] Marzban C.Neural networks for postprocessing model output:ARPS[J].Monthly Weather Review,2003,131(6):1103-1111. [8] Zjavka L.Numerical weather prediction revisions using the locally trained differential polynomial network[J].Expert Systems with Applications,2016,44:265-274. [9] Yi C,Shin Y,Roh J W.Development of an urban high-resolution air temperature forecast system for local weather information services based on statistical downscaling[J].Atmosphere,2018,9(5):164. [10] Shin Y,Yi C.Statistical downscaling of urban-scale air temperatures using an analog model output statistics technique[J].Atmosphere,2019,10(8):427. [11] 谭江红,陈伟亮,王珊珊.一种机器学习方法在湖北定时气温预报中的应用试验[J].气象科技进展,2018,8(5):46-50. [12] 门晓磊,焦瑞莉,王鼎,等.基于机器学习的华北气温多模式集合预报的订正方法[J].气候与环境研究,2019,24(1):116-124. [13] 陈昱文,黄小猛,李熠,等.基于ECMWF产品的站点气温预报集成学习误差订正[J].应用气象学报,2020,31(4):494-503. [14] 韩念霏,杨璐,陈明轩,等.京津冀站点风温湿要素的机器学习订正方法[J].应用气象学报,2022,33(4):489-500. [15] Chen K R,Wang P,Yang X J,et al.A model output deep learning method for grid temperature forecasts in Tianjin area[J].Applied Sciences,2020,10(17):5808. [16] 王莹,杨晓君,王迪,等.利用卷积神经网络提高天气短期气温预报效果[J].气象科学,2024,44(4):793-800. [17] David Kreuzer,Michael Munz,Stephan Schlüter.Short-term temperature forecasts using a convolutional neural network:An application to different weather stations in Germany[J].Machine Learning with Applications,2020,2:100007. [18] 潘留杰,薛春芳,王建鹏,等.一个简单的格点温度预报订正方法[J].气象,2017,43(12):1584-1593. [19] 雷彦森,蔡晓军,王文,等.遗传算法优化的BP神经网络在地面温度多模式集成预报的应用研究[J].气象科学,2018,38(6):806-814. [20] 郝翠,张迎新,王在文,等.最优集合预报订正方法在客观温度预报中的应用[J].气象,2019,45(8):1085-1092. [21] 任萍,陈明轩,曹伟华,等.基于机器学习的复杂地形下短期数值天气预报误差分析与订正[J].气象学报,2020,78(6):1002-1020. [22] Rodriguez-Galiano V,Sanchez-Castillo M,Chica-Olmo M,et al.Machine learning predictive models for mineral prospectivity:an evaluation of neural networks,random forest,regression trees and support vector machines[J].Ore Geology Reviews,2015,71:804-818. [23] Geurts P,Ernst D,Wehenkel L.Extremely randomized trees[J].Machine Learning,2006,63(1):3-42. [24] Nie P,Roccotelli M,Fanti M P,et al.Prediction of home energy consumption based on gradient boosting regression tree[J].Energy Reports,2021,7:1246-1255. [25] Schneider A,Hommel G,Blettner M.Linear regression analysis:Part 14 of a series on evaluation of scientific publications[J].Deutsches Ärzteblatt International,2010,107(44):776-782. [26] Tibshirani R.Regression shrinkage and selection via the lasso[J].Journal of the Royal Statistical Society.Series B (Methodological),1996,58(1):267-288. |