Journal of Meteorology and Environment ›› 2024, Vol. 40 ›› Issue (3): 138-144.doi: 10.3969/j.issn.1673-503X.2024.03.017
• Bulletins • Previous Articles
Ciren DAWA1(),Zhui LUO1,Yihang HONG2,Zhuoga CIREN1
Received:
2023-01-31
Online:
2024-06-28
Published:
2024-08-09
CLC Number:
Ciren DAWA,Zhui LUO,Yihang HONG,Zhuoga CIREN. Impact of aerosol on rainy season precipitation in Xizang Plateau based on machine learning method[J]. Journal of Meteorology and Environment, 2024, 40(3): 138-144.
Table 1
Comparison of meteorological parameters and pollutant concentration data for the whole year, rainy season, and non-rainy season in the Lazi region in 2021"
变量 | 全年 | 雨季 | 非雨季 | 显著性分析 |
降水量/mm | 37.3±64.9 | 98.0±82.9 | 8.6±20.0 | P < 0.01 |
U10/(m·s-1) | 0.8±0.8 | 0.1±0.5 | 1.2±0.7 | P < 0.01 |
V10/(m·s-1) | 0.9±0.7 | 0.7±0.6 | 1.0±0.7 | P>0.05 |
D2M/℃ | -6.8±11.1 | 5.6±2.6 | -12.7±8.4 | P < 0.01 |
T2M/℃ | 4.7±5.3 | 10.7±1.3 | 1.9±4.0 | P < 0.01 |
LAI_HV/(m2·m-2) | 0.0±0.0 | 0.0±0.0 | 0.0±0.0 | P>0.05 |
LAI_LV/(m2·m-2) | 0.7±0.1 | 0.8±0.0 | 0.7±0.0 | P>0.05 |
SP/(hPa) | 590.0±2.9 | 591.8±1.5 | 589.2±3.0 | P < 0.01 |
PM2.5/(μg·m-3) | 11.7±4.5 | 9.1±1.4 | 13.0±4.9 | P < 0.01 |
SO42-/(μg·m-3) | 2.1±0.7 | 1.8±0.5 | 2.3±0.7 | P < 0.01 |
NO3-/(μg·m-3) | 2.4±1.1 | 1.4±0.3 | 2.8±1.0 | P < 0.01 |
NH4+/(μg·m-3) | 1.9±0.7 | 1.3±0.3 | 2.2±0.7 | P < 0.01 |
OM/(μg·m-3) | 3.8±1.3 | 3.1±0.7 | 4.2±1.4 | P < 0.01 |
OC/(μg·m-3) | 2.4±0.8 | 1.9±0.4 | 2.6±0.9 | P < 0.01 |
BC/(μg·m-3) | 0.7±0.3 | 0.6±0.1 | 0.8±0.3 | P < 0.01 |
SOC/(μg·m-3) | 1.0±0.4 | 0.7±0.2 | 1.1±0.4 | P < 0.01 |
Others/(μg·m-3) | 0.8±2.7 | 0.8±1.2 | 0.8±3.1 | P < 0.01 |
SOC/OC | 0.4±0.1 | 0.4±0.1 | 0.4±0.1 | P < 0.01 |
1 | 常姝婷. 全球变暖背景下青藏高原夏季大气水汽特征及对区域气候的影响[D]. 兰州: 兰州大学, 2018. |
2 | 路红亚, 杜军, 袁雷, 等. 1971—2012年珠穆朗玛峰地区极端降水事件变化研究[J]. 冰川冻土, 2014, 36 (3): 563- 572. |
3 | 刘蕾, 陈茂钦, 蓝柳茹, 等. 桂北山区两次突发性大暴雨触发及维持机制分析[J]. 气象与环境学报, 2022, 38 (5): 15- 24. |
4 | 刘达之, 姚聃, 梁旭东. 基于四维变分同化的"6·23"阜宁龙卷大涡模拟研究[J]. 气象与环境学报, 2022, 38 (6): 1- 9. |
5 | 邢莉, 傅宗玫. 有机气溶胶对中国境内云凝结核数量的贡献研究[J]. 北京大学学报: 自然科学版, 2015, 51 (1): 13- 23. |
6 | 张瑶, 吴昊, 张东梅, 等. 超大城市新粒子生成事件对云凝结核贡献分析[J]. 环境科学学报, 2022, 42 (9): 372- 383. |
7 |
Huang R J , Zhang Y L , Bozzetti C , et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514 (7521): 218- 222.
doi: 10.1038/nature13774 |
8 |
Dao X , Lin Y C , Cao F , et al. Introduction to the national aerosol chemical composition monitoring network of China: objectives, current status, and outlook[J]. Bulletin of the American Meteorological Society, 2019, 100 (12): ES337- ES351.
doi: 10.1175/BAMS-D-18-0325.1 |
9 |
Geng G N , Zhang Q , Tong D , et al. Chemical composition of ambient PM2.5 over China and relationship to precursor emissions during 2005-2012[J]. Atmospheric Chemistry and Physics, 2017, 17 (14): 9187- 9203.
doi: 10.5194/acp-17-9187-2017 |
10 | Liu S G , Geng G N , Xiao Q Y , et al. Tracking daily concentrations of PM2.5 chemical composition in China since 2000[J]. Environmental Science & Technology, 2022, 56 (22): 16517- 16527. |
11 |
Bao M Y , Zhang Y L , Cao F , et al. Highly time-resolved characterization of carbonaceous aerosols using a two-wavelength Sunset thermal-optical carbon analyzer[J]. Atmospheric Measurement Techniques, 2021, 14 (6): 4053- 4068.
doi: 10.5194/amt-14-4053-2021 |
12 |
Yu M Y , Zhang Y L , Xie T , et al. Quantification of fossil and non-fossil sources to the reduction of carbonaceous aerosols in the Yangtze River Delta, China: insights from radiocarbon analysis during 2014-2019[J]. Atmospheric Environment, 2023, 292, 119421.
doi: 10.1016/j.atmosenv.2022.119421 |
13 |
Miyakawa T , Kanaya Y , Komazaki Y , et al. Intercomparison between a single particle soot photometer and evolved gas analysis in an industrial area in Japan: implications for the consistency of soot aerosol mass concentration measurements[J]. Atmospheric Environment, 2016, 127, 14- 21.
doi: 10.1016/j.atmosenv.2015.12.018 |
14 |
Hong Y H , Cao F , Fan M Y , et al. Impacts of chemical degradation of levoglucosan on quantifying biomass burning contribution to carbonaceous aerosols: a case study in Northeast China[J]. Science of the Total Environment, 2022, 819, 152007.
doi: 10.1016/j.scitotenv.2021.152007 |
15 | 姜建芳, 侯丽丽, 齐梦溪, 等. 天津市采暖季PM2.5中碳组分污染特征及来源分析[J]. 生态环境学报, 2020, 29 (6): 1181- 1188. |
16 | 黄炯丽, 陈志明, 莫招育, 等. 广西玉林市大气PM10和PM2.5中有机碳和元素碳污染特征分析[J]. 环境科学, 2018, 39 (1): 27- 37. |
17 | Shin J Y , Ro Y , Cha J W , et al. Assessing the applicability of random forest, stochastic gradient boosted model, and extreme learning machine methods to the quantitative precipitation estimation of the radar data: a case study to gwangdeoksan radar, South Korea, in 2018[J]. Advances in Meteorology, 2019, 2019, 6542410. |
18 |
Li Q L , Zhu Q Y , Xu M W , et al. Estimating the impact of COVID-19 on the PM2.5 levels in China with a satellite-driven machine learning model[J]. Remote Sensing, 2021, 13 (7): 1351.
doi: 10.3390/rs13071351 |
19 |
Grange S K , Carslaw D C . Using meteorological normalisation to detect interventions in air quality time series[J]. Science of the Total Environment, 2019, 653, 578- 588.
doi: 10.1016/j.scitotenv.2018.10.344 |
20 |
Grange S K , Carslaw D C , Lewis A C , et al. Random forest meteorological normalisation models for Swiss PM10 trend analysis[J]. Atmospheric Chemistry and Physics, 2018, 18 (9): 6223- 6239.
doi: 10.5194/acp-18-6223-2018 |
21 |
Grange S K , Uzu G , Weber S , et al. Linking Switzerland's PM10 and PM2.5 oxidative potential (OP) with emission sources[J]. Atmospheric Chemistry and Physics, 2022, 22 (10): 7029- 7050.
doi: 10.5194/acp-22-7029-2022 |
22 |
Lovric M , Pavlovic K , Vukovic M , et al. Understanding the true effects of the COVID-19 lockdown on air pollution by means of machine learning[J]. Environmental Pollution, 2021, 274, 115900.
doi: 10.1016/j.envpol.2020.115900 |
23 | Wright M N , Ziegler A . Ranger: a fast implementation of random forests for high dimensional data in C++ and R[J]. Journal of Statistical Software, 2017, 77 (1): 1- 17. |
24 | Liu F T, Ting K M, Zhou Z H. Isolation forest[C]//Proceedings of 2008 Eighth IEEE International Conference on Data Mining. Pisa: IEEE, 2008: 413-422. |
[1] | Jinmeng CUI,Chunhua CONG,Yi ZHENG,Jinmin CHEN,Ming YANG,Jikang WANG,Hongli LIU,Xuguang DONG. Analysis of air pollution characteristics and meteorological conditions in Shandong province during 2013-2021 [J]. Journal of Meteorology and Environment, 2024, 40(3): 46-54. |
[2] | Zhongjie LI,Chang'an YAN,Yali LI,Dawei ZHANG,Jianwu SHI. Study of PM2.5 mass concentration evolution and potential source diffusion simulation in Kunming [J]. Journal of Meteorology and Environment, 2024, 40(3): 26-36. |
[3] | Jinglan LUO,Chao HU,Dongmin TANG,Xueqin PENG,Yike GAO. Comparative analysis of ozone pollution cases in Meishan city based on unmanned aerial vehicle vertical observation [J]. Journal of Meteorology and Environment, 2024, 40(3): 17-25. |
[4] | Lei YAO,Jiaren YAN,Ruixiang LIU. A polluted weather analysis in Lianyungang area based on unmanned aerial vehicle vertical observation [J]. Journal of Meteorology and Environment, 2024, 40(3): 9-16. |
[5] | Xueyan MA,Meiling SUN,Ling GUO,Xiaojia WANG. Spatio-temporal distribution of negative oxygen ion concentration in different functional areas of Tianjin city in 2022 and their relationships with meteorological conditions [J]. Journal of Meteorology and Environment, 2024, 40(2): 59-68. |
[6] | Wei WU,Tie-liang SHAN. Transport and case study of heavy air pollution in Luohe during autumn and winter using backward trajectory analysis [J]. Journal of Meteorology and Environment, 2022, 38(3): 65-74. |
[7] | Xiao-yu YAN, Yuan-yuan YANG, Xiao-hui GOU, Jian-jun LIU, Zhan-sheng SU, Bao-guo WU, Xiao-li GONG. Analysis of actinic flux and its influence factors in Yinchuan based on TUV model [J]. Journal of Meteorology and Environment, 2022, 38(3): 127-136. |
[8] | Xiao-xiao LI, Hu-jia ZHAO, Yan-jun MA, Xiao-chu LIU, Si-xu LI, Xiao-lan LI, Yang-feng WANG, Ye HONG. Aerosol vertical variations and the origin analysis on a pollution event in Shenyang on March 2021 [J]. Journal of Meteorology and Environment, 2022, 38(2): 46-54. |
[9] | Hui ZHANG,Chu WU,Jing-wei ZHANG,Xiao-ping LIN,Jia-quan LIANG,Su LIU,Yan-fang GUO,Cheng-liu LI. Characteristics of primary pollutants of air quality and their relationships with meteorological conditions in Heyuan [J]. Journal of Meteorology and Environment, 2022, 38(1): 40-47. |
[10] | An-ke GUO,Xiao-ge YIN,Zhi-min WANG,Zhi-qiang LI,Zhe LI,Ji ZHANG,Lu CHEN,Hao-yun HUANG. A study on the response relationship between air pollution process and meteorological wind field in an industrial park [J]. Journal of Meteorology and Environment, 2022, 38(1): 23-32. |
[11] | Wei-jie LI,Hu-jia ZHAO,Quan-liang CHEN,Lin-chang AN,Jie ZHANG,Xu-xin WANG. Variation characteristics of air pollutants in Sichuan region during January-March of 2020 [J]. Journal of Meteorology and Environment, 2022, 38(1): 15-22. |
[12] | Wei GUO, Ling-yun ZHU, Wen-ya WANG, Xing-ai GAO, Peng-wei CHENG, Yue-jun ZHANG. Evaluation of air quality improvement in Taiyuan during Second National Youth Games [J]. Journal of Meteorology and Environment, 2021, 37(6): 36-43. |
[13] | Tulinisha,Da-wei AN,Chao ZHANG,Bi-xin YU,Chun-yan CHEN. Characteristics of dust weather in southern Xinjiang based on hourly data [J]. Journal of Meteorology and Environment, 2021, 37(5): 34-40. |
[14] | Yan-jun MA, Hu-jia ZHAO, Yu-fei LIU, Xiao-lan LI, Yang-feng WANG, Yun-hai ZHANG, Ye HONG. Analysis of aerosol concentration variation and weather characteristics of heavy pollution events in northeast China [J]. Journal of Meteorology and Environment, 2021, 37(5): 13-19. |
[15] | Ning-wei LIU, Wei-jun QUAN, Wan-hui REN, Xiao-lan LI, Li-guang LI, Di WANG. Ozone pollution and the related effects of meteorological factors in Liaoning province, China [J]. Journal of Meteorology and Environment, 2021, 37(5): 27-33. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|