1 |
李红, 彭良, 毕方, 等. 我国PM2.5与臭氧污染协同控制策略研究[J]. 环境科学研究, 2019, 32 (10): 1763- 1778.
|
2 |
Zheng B , Dan T , Meng L , et al. Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions[J]. Atmospheric Chemistry and Physics Discussions, 2018, 18 (19): 14095- 14111.
doi: 10.5194/acp-18-14095-2018
|
3 |
Wang P , Guo H , Hu J , et al. Responses of PM2.5 and O3 concentrations to changes of meteorology and emissions in China[J]. Science of the Total Environment, 2019, 662, 297- 306.
doi: 10.1016/j.scitotenv.2019.01.227
|
4 |
Li K , Jacob D J , Liao H , et al. Anthropogenic drivers of 2013-2017 trends in summer surface ozone in China[J]. Proceedings of the National Academy of Sciences, 2019, 116 (2): 422- 427.
doi: 10.1073/pnas.1812168116
|
5 |
王韵杰, 张少君, 郝吉明. 中国大气污染治理: 进展·挑战·路径[J]. 环境科学研究, 2019, 32 (10): 1755- 1762.
|
6 |
Lyu X P , Wang N , Guo H , et al. Causes of a continuous summertime O3 pollution event in Jinan, a central city in the North China Plain[J]. Atmospheric Chemistry and Physics, 2019, 19 (5): 3025- 3042.
doi: 10.5194/acp-19-3025-2019
|
7 |
郭伟, 朱凌云, 汪文雅, 等. 2019年太原青运会期间空气质量评估[J]. 气象与环境学报, 2021, 37 (6): 36- 43.
doi: 10.3969/j.issn.1673-503X.2021.06.005
|
8 |
Tan Z , Lu K , Jiang M , et al. Exploring ozone pollution in Chengdu, southwestern China: A case study from radical chemistry to O3-VOC-NOx sensitivity[J]. Science of the Total Environment, 2018, 636, 775- 786.
doi: 10.1016/j.scitotenv.2018.04.286
|
9 |
Real E , Sartelet K . Modeling of photolysis rates over Europe: impact on chemical gaseous species and aerosols[J]. Atmospheric Chemistry and Physics, 2011, 11 (4): 1711- 1727.
doi: 10.5194/acp-11-1711-2011
|
10 |
Dickerson R R , Kondragunta S , Stenchikov G , et al. The impact of aerosols on solar ultraviolet radiation and photochemical smog[J]. Science, 1997, 278 (5339): 827- 830.
doi: 10.1126/science.278.5339.827
|
11 |
Lou S J , Liao H , Zhu B . Impacts of aerosols on surface-layer ozone concentrations in China through heterogeneous reactions and changes in photolysis rates[J]. Atmospheric Environment, 2014, 85, 123- 138.
doi: 10.1016/j.atmosenv.2013.12.004
|
12 |
李红丽, 王杨君, 黄凌, 等. 中国典型城市臭氧与二次气溶胶的协同增长作用分析[J]. 环境科学学报, 2020, 40 (12): 4368- 4379.
|
13 |
程麟钧, 王帅, 宫正宇, 等. 中国臭氧浓度的时空变化特征及分区[J]. 中国环境科学, 2017, 37 (11): 4003- 4012.
|
14 |
马雁军, 赵胡笳, 刘宇飞, 等. 中国东北地区重污染事件气溶胶浓度变化与天气形势分析[J]. 气象与环境学报, 2021, 37 (5): 13- 19.
|
15 |
刘鹏姣, 那晓东, 李光辉. 2015—2016年东北三省PM2.5的时空分布特征[J]. 测绘与空间地理信息, 2018, 41 (2): 72- 76.
doi: 10.3969/j.issn.1672-5867.2018.02.020
|
16 |
刘宁微, 权维俊, 任万辉, 等. 辽宁地区O3污染状况及相关气象要素分析[J]. 气象与环境学报, 2021, 37 (5): 27- 33.
doi: 10.3969/j.issn.1673-503X.2021.05.005
|
17 |
史珺, 赵玉洁. 天津市东丽区一次持续性雾霾天气过程的特征及影响要素分析[J]. 气象与环境学报, 2021, 37 (5): 8- 12.
|
18 |
胡亚男, 马晓燕, 沙桐, 等. 不同排放源对华东地区PM2.5影响的数值模拟[J]. 中国环境科学, 2018, 38 (5): 1616- 1628.
|
19 |
浦静姣, 张艳, 余琦, 等. 上海地区O3与NO2时空特征数值模拟个例研究[J]. 中国环境科学, 2009, 29 (5): 461- 468.
|
20 |
邵平, 辛金元, 安俊琳, 等. 长三角工业区夏季近地层臭氧和颗粒物污染相互关系研究[J]. 大气科学, 2017, 41 (3): 618- 628.
|
21 |
赖安琪, 陈晓阳, 刘一鸣, 等. 珠江三角洲高质量浓度PM2.5和O3复合污染特征[J]. 中山大学学报(自然科学版), 2018, 57 (4): 30- 36.
|
22 |
毛卓成, 许建明, 杨丹丹, 等. 上海地区PM2.5-O3复合污染特征及气象成因分析[J]. 中国环境科学, 2019, 39 (7): 2730- 2738.
|
23 |
赵辉, 郑有飞, 吴晓云, 等. 江苏省大气复合污染特征与相关气象驱动[J]. 中国环境科学, 2018, 38 (8): 2830- 2839.
doi: 10.3969/j.issn.1000-6923.2018.08.005
|
24 |
王占山, 张大伟, 李云婷, 等. 北京市夏季不同O3和PM2.5污染状况研究[J]. 环境科学, 2016, 37 (3): 807- 815.
|
25 |
罗悦函, 赵天良, 孟凯, 等. 华北平原和山区城市PM2.5和O3变化关系比较分析[J]. 中国环境科学, 2021, 41 (9): 3981- 3989.
|
26 |
陈楠, 陈立, 王莉莉, 等. 2015—2020年湖北省PM2.5和臭氧复合污染特征演变分析[J]. 环境科学研究, 2022, 35 (3): 659- 672.
|
27 |
尉鹏, 王文杰, 苏福庆, 等. 北京夏季典型PM2.5与O3相继重污染事件分析[J]. 安全与环境学报, 2015, 15 (6): 311- 315.
|
28 |
伍德侠, 宫正宇, 潘本锋, 等. 颗粒物激光雷达在大气复合污染立体监测中的应用[J]. 中国环境监测, 2015, 31 (5): 156- 162.
|
29 |
Zhang Q , Ma X C , Tie X X , et al. Vertical distributions of aerosols under different weather conditions: Analysis of in-situ aircraft measurements in Beijing, China[J]. Atmospheric Environment, 2009, 43 (34): 5526- 5535.
doi: 10.1016/j.atmosenv.2009.05.037
|
30 |
Li J W , Han Z W . Aerosol vertical distribution over east China from RIEMS-Chem simulation in comparison with CALIPSO measurements[J]. Atmospheric Environment, 2016, 143, 177- 189.
doi: 10.1016/j.atmosenv.2016.08.045
|
31 |
安俊琳, 王跃思, 李昕, 等. 北京大气O3与NOx的变化特征[J]. 生态环境学报, 2008, 17 (4): 1420- 1424.
|
32 |
宋从波, 瑞芃, 何建军, 等. 河北廊坊市区大气中NO、NO2和O3污染特征研究[J]. 中国环境科学, 2016, 36 (10): 2903- 2912.
|
33 |
任阵海, 万本太, 苏福庆, 等. 当前我国大气环境质量的几个特征[J]. 环境科学研究, 2004, 17 (1): 1- 6.
doi: 10.3321/j.issn:1001-6929.2004.01.001
|
34 |
张晨, 朱彬, 刘晓慧, 等. 一次冷锋过程中我国区域空气污染边界层特征[J]. 中国环境科学, 2020, 40 (10): 4284- 4291.
|
35 |
任浦慧, 解静芳, 姜洪进, 等. 太原市大气PM2.5季节传输路径和潜在源分析[J]. 中国环境科学, 2019, 39 (8): 3144- 3151.
|
36 |
Sun Y , Song T , Tang G Q , et al. The vertical distribution of PM2.5 and boundary-layer structure during summer haze in Beijing[J]. Atmospheric Environment, 2013, 74, 413- 421.
doi: 10.1016/j.atmosenv.2013.03.011
|
37 |
王跃, 王莉莉, 赵广娜, 等. 北京冬季PM2.5重污染时段不同尺度环流形势及边界层结构分析[J]. 气候与环境研究, 2014, 19 (2): 173- 184.
|
38 |
宋挺, 刘军志, 胡婷婷, 等. MODIS气溶胶光学厚度产品和激光雷达数据在大气颗粒物监测中的应用[J]. 遥感技术与应用, 2016, 31 (2): 397- 404.
|
39 |
胡晓, 张国超, 林陈爽, 等. 基于激光雷达的宁波地区气溶胶垂直分布特征研究[J]. 气象与环境科学, 2019, 42 (2): 74- 81.
|
40 |
郭赈东, 王成刚, 赵嘉琪, 等. 杭州富阳地区2015—2018年冬季不同天气形势下PM2.5传输路径和潜在源区分析[J]. 环境科学学报, 2021, 41 (5): 1680- 1689.
|
41 |
闫世明, 王雁, 张岳军, 等. 五台山春季气溶胶传输特征[J]. 中国环境科学, 2020, 40 (2): 497- 505.
doi: 10.3969/j.issn.1000-6923.2020.02.004
|