| 1 | Levy II H .  Normal atmosphere: large radical and formaldehyde concentrations predicted[J]. Science, 1971, 173 (3992): 141- 143. doi: 10.1126/science.173.3992.141
 | 
																													
																						| 2 | Wofsy S C ,  McConnell J C ,  McElroy M B .  Atmospheric CH4, CO, and CO2[J]. Journal of Geophysical Research, 1972, 77 (24): 4477- 4493. doi: 10.1029/JC077i024p04477
 | 
																													
																						| 3 | IPCC. Intergovernmental panel on climate change[R]. Geneva: IPCC Secretariat, 2007. | 
																													
																						| 4 | Lee D S ,  Holland M R ,  Falla N .  The potential impact of ozone on materials in the U.K.[J]. Atmospheric Environment, 1996, 30 (7): 1053- 1065. doi: 10.1016/1352-2310(95)00407-6
 | 
																													
																						| 5 | Danielsen E F .  The laminar structure of the atmosphere and its relation to the concept of a tropopause[J]. Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie A, 1959, 11 (3): 293- 332. doi: 10.1007/BF02247210
 | 
																													
																						| 6 | Reiter E R .  Stratospheric-tropospheric exchange processes[J]. Reviews of Geophysics, 1975, 13 (4): 459- 474. doi: 10.1029/RG013i004p00459
 | 
																													
																						| 7 | Chameides W L ,  Walker J C G .  A time-dependent photochemical model for ozone near the ground[J]. Journal of Geophysical Research, 1976, 81 (3): 413- 420. doi: 10.1029/JC081i003p00413
 | 
																													
																						| 8 | Logan J A .  Tropospheric ozone: Seasonal behavior, trends, and anthropogenic influence[J]. Journal of Geophysical Research: Atmospheres, 1985, 90 (D6): 10463- 10482. doi: 10.1029/JD090iD06p10463
 | 
																													
																						| 9 | Ma J Z ,  Zhou X J ,  Hauglustaine D .  Summertime tropospheric ozone over China simulated with a regional chemical transport model 2. Source contributions and budget[J]. Journal of Geophysical Research: Atmospheres, 2002, 107 (D22): 4612. doi: 10.1029/2001JD001355
 | 
																													
																						| 10 | 刘宁微, 马建中.  东亚区域对流层臭氧及其前体物的季节性关联[J]. 应用气象学报, 2017, 28 (4): 427- 435. | 
																													
																						| 11 | Liu N W ,  Lin W L ,  Ma J Z , et al.  Seasonal variation in surface ozone and its regional characteristics at global atmosphere watch stations in China[J]. Journal of Environmental Sciences, 2019, 77, 291- 302. doi: 10.1016/j.jes.2018.08.009
 | 
																													
																						| 12 | 徐晓斌, 林伟立.  卫星观测的中国地区1979-2005年对流层臭氧变化趋势[J]. 气候变化研究进展, 2010, 6 (2): 100- 105. doi: 10.3969/j.issn.1673-1719.2010.02.005
 | 
																													
																						| 13 | Ma Z Q ,  Xu J ,  Quan W J , et al.  Significant increase of surface ozone at a rural site, north of eastern China[J]. Atmospheric Chemistry and Physics, 2016, 16 (6): 3969- 3977. doi: 10.5194/acp-16-3969-2016
 | 
																													
																						| 14 | Sun L ,  Xue L K ,  Wang T , et al.  Significant increase of summertime ozone at Mount Tai in Central Eastern China[J]. Atmospheric Chemistry and Physics, 2016, 16 (16): 10637- 10650. doi: 10.5194/acp-16-10637-2016
 | 
																													
																						| 15 | Xu X ,  Lin W ,  Wang T , et al.  Long-term trend of surface ozone at a regional background station in eastern China 1991-2006:enhanced variability[J]. Atmospheric Chemistry and Physics, 2008, 8 (10): 2595- 2607. doi: 10.5194/acp-8-2595-2008
 | 
																													
																						| 16 | Wang T ,  Wei X L ,  Ding A J , et al.  Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994-2007[J]. Atmospheric Chemistry and Physics, 2009, 9 (16): 6217- 6227. doi: 10.5194/acp-9-6217-2009
 | 
																													
																						| 17 | Ding A J ,  Wang T ,  Thouret V , et al.  Tropospheric ozone climatology over Beijing: analysis of aircraft data from the MOZAIC program[J]. Atmospheric Chemistry and Physics Discussions, 2007, 7 (4): 9795- 9828. | 
																													
																						| 18 | Wang X M ,  Chen F ,  Wu Z Y , et al.  Impacts of weather conditions modified by urban expansion on surface ozone: comparison between the Pearl River Delta and Yangtze River Delta regions[J]. Advances in Atmospheric Sciences, 2009, 26 (5): 962- 972. doi: 10.1007/s00376-009-8001-2
 | 
																													
																						| 19 | Ran L ,  Lin W L ,  Deji Y Z , et al.  Surface gas pollutants in Lhasa, a highland city of Tibet-current levels and pollution implications[J]. Atmospheric Chemistry and Physics, 2014, 14 (19): 10721- 10730. doi: 10.5194/acp-14-10721-2014
 | 
																													
																						| 20 | Wang Q Y ,  Gao R S ,  Cao J J , et al.  Observations of high level of ozone at Qinghai Lake basin in the northeastern Qinghai-Tibetan Plateau, western China[J]. Journal of Atmospheric Chemistry, 2015, 72 (1): 19- 26. doi: 10.1007/s10874-015-9301-9
 | 
																													
																						| 21 | Yang Y ,  Liao H ,  Li J .  Impacts of the East Asian summer monsoon on interannual variations of summertime surface-layer ozone concentrations over China[J]. Atmospheric Chemistry and Physics, 2014, 14 (13): 6867- 6879. doi: 10.5194/acp-14-6867-2014
 | 
																													
																						| 22 | Li X Y ,  Liu J F ,  Mauzerall D L , et al.  Effects of trans-Eurasian transport of air pollutants on surface ozone concentrations over Western China[J]. Journal of Geophysical Research: Atmospheres, 2014, 119 (21): 12338- 12354. doi: 10.1002/2014JD021936
 | 
																													
																						| 23 | Li X L ,  Ma Y J ,  Wang Y F , et al.  Temporal and spatial analyses of particulate matter(PM10 and PM2.5) and its relationship with meteorological parameters over an urban city in northeast China[J]. Atmospheric Research, 2017, 198, 185- 193. doi: 10.1016/j.atmosres.2017.08.023
 | 
																													
																						| 24 | 刘传熙, 刘毅, 王永.  基于探空资料的北京地区大气臭氧垂直分布特征[J]. 气象与环境学报, 2016, 32 (1): 46- 52. | 
																													
																						| 25 | 徐静.  秦皇岛市气温与近地面臭氧浓度的关系分析[J]. 气象与环境学报, 2020, 36 (4): 83- 88. doi: 10.3969/j.issn.1673-503X.2020.04.011
 | 
																													
																						| 26 | 王雪松, 李金龙, 张远航, 等.  北京地区臭氧污染的来源分析[J]. 中国科学B缉: 化学, 2009, 39 (6): 548- 559. | 
																													
																						| 27 | 余钟奇, 马井会, 毛卓成, 等.  2017年上海臭氧污染气象条件分析及臭氧污染天气分型研究[J]. 气象与环境学报, 2019, 35 (6): 46- 54. doi: 10.3969/j.issn.1673-503X.2019.06.007
 | 
																													
																						| 28 | 梁碧玲, 张丽, 赖鑫, 等.  深圳市臭氧污染特征及其与气象条件的关系[J]. 气象与环境学报, 2017, 33 (1): 66- 71. | 
																													
																						| 29 | 朱李华, 陶俊, 张仁健, 等.  冬夏季广州城区碳气溶胶特征及其与O3和气象条件的关联[J]. 环境科学学报, 2010, 30 (10): 1942- 1949. | 
																													
																						| 30 | 国务院. 国务院关于印发大气污染防治行动计划的通知[EB/OL]. 北京: 国务院, 2013(2013-09-10)[2013-09-12]. http://www.gov.cn/zhengce/content/2013-09/13/content_4561.htm. | 
																													
																						| 31 | Zhang Q ,  Zheng Y X ,  Tong D , et al.  Drivers of improved PM2.5 air quality in China from 2013 to 2017[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116 (49): 24463- 24469. | 
																													
																						| 32 | 张婕, 刘昊野, 辛金元, 等.  沈阳地区MODIS与MERSI气溶胶产品对比研究[J]. 遥感学报, 2016, 20 (4): 549- 560. |