主办单位:中国气象局沈阳大气环境研究所
国际刊号:ISSN 1673-503X
国内刊号:CN 21-1531/P

气象与环境学报 ›› 2012, Vol. 28 ›› Issue (5): 46-.

• 论文 • 上一篇    下一篇

南京市呼吸系统疾病死亡率与气象要素的关系及预测

李雪源1 景元书1 吴凡1 周连2 陈晓东2   

  • 出版日期:2012-10-31 发布日期:2012-10-31

The relationship between respiratory system diseases mortality and meteorological elements and its prediction in Nanjing

LI Xue-yuan1 JING Yuan-shu1 WU Fan1 ZHOU Lian2 CHEN Xiao-dong2   

  • Online:2012-10-31 Published:2012-10-31

摘要: 在全球气候背景下,气象要素的变化对呼吸系统疾病的影响不可忽视。基于2004—2010年南京地区呼吸系统死因监测资料、人口资料和同期气象数据,利用主成分分析法,讨论该区域呼吸系统疾病死亡率的分布特征和对气象要素的响应及疾病死亡率预测模型的建立。结果表明:呼吸系统死亡率在7月最低,1月最高,上半年的变化幅度大于下半年。夏半年,气候以低压、高温和多降水为特点,呼吸系统疾病患者死亡率低;冬半年,气候有相对湿度大、日照时间短的特点,同期呼吸系统疾病死亡率呈上升趋势。回代检验结果r=0.755,预测检验的拟合系数为r=0.795,均通过了0.01的显著性水平检验。主成分回归模型的拟合效果较好,可为相应预报工作提供参考。

关键词: 呼吸系统疾病, 气象要素, 主成分分析, 预测模型

Abstract: Under the background of global climate change, the impact of climate change on respiratory system diseases can not be ignored. Based on the death surveillance data, demographic data and meteorological data from 2004 to 2010 in Nanjing, the distribution characteristics of respiratory system diseases mortality and its response to meteorological elements in the study area were discussed by a principal component analysis method. A disease mortality prediction model was established. The results show that the patients’ mortalities of respiratory system diseases are the lowest in July and highest in January, and its change amplitude is greater in the first half year than in the second one. The climate is characterized by low pressure, high temperature, and more precipitation in summer half year and by great relative humidity, short duration in winter half year respectively, so the patients’ mortalities of respiratory system diseases are low in the first half year and in an increasing trend in the second one. The fitting coefficients of return test and prediction are 0.755 and 0.795 respectively, and both pass the significance test of 0.01 level. The fitting effect of the principal component regression model is good, which could provide references for the corresponding forecast.

Key words: Respiratory system disease, Meteorological element, Principal component analysis, Prediction model