主办单位:中国气象局沈阳大气环境研究所
国际刊号:ISSN 1673-503X
国内刊号:CN 21-1531/P

气象与环境学报 ›› 2023, Vol. 39 ›› Issue (4): 47-56.doi: 10.3969/j.issn.1673-503X.2023.04.007

• 论文 • 上一篇    下一篇

三套再分析降水资料在安徽省的适用性评估

高金兰1(),温华洋2,郑小艺1,曹亚楠1,王云1   

  1. 1. 安徽省人工影响天气办公室, 安徽合肥 230031
    2. 安徽省气象信息中心, 安徽合肥 230031
  • 收稿日期:2022-11-04 出版日期:2023-08-28 发布日期:2023-09-23
  • 作者简介:高金兰, 女, 1986年生, 工程师, 主要从事降水资源和数值模式评估研究, E-mail: gaojinlan87@126.com
  • 基金资助:
    国家重点研发计划项目(2019YFC1510303);安徽省重点研究与开发计划项目(1704f0804055);安徽省气象局创新团队建设计划项目

Applicability evaluation of three reanalysis precipitation datasets in Anhui province

Jinlan GAO1(),Huayang WEN2,Xiaoyi ZHENG1,Ya'nan CAO1,Yun WANG1   

  1. 1. Anhui Weather Modification Office, Hefei 230031, China
    2. Anhui Meteorological Information Centre, Hefei 230031, China
  • Received:2022-11-04 Online:2023-08-28 Published:2023-09-23

摘要:

利用1979—2018年安徽省台站降水观测资料,分别从年、季、月尺度和梅雨量对三套高分辨率再分析降水资料(CMA-RA、CMFD、ERA5)在安徽省的适用性进行分析评估。结果表明:三套再分析资料均能模拟出安徽省夏雨集中,春雨多于秋雨,冬雨最少的季节降水特征;多年平均月降水量较实况均为正偏差,12月降水量的平均绝对百分比误差最大。三套资料均明显高估了安徽省山区的降水量。其中,CMA-RA资料的年降水和夏、冬季降水及沿江江南地区梅雨量空间分布表征最好;CMFD资料的降水量年际变化表征较好,但空间分布较差,春、秋季降水时空分布以及梅雨量年际变化表征最好;ERA5资料的降水量模拟存在系统性高估,且偏差最大,仅1月降水量较其他资料略好。

关键词: 再分析资料, CMA-RA, 降水量

Abstract:

In this study, three high resolution reanalysis precipitation datasets (CMA-RA, CMFD, and ERA5) were compared with annual, seasonal and monthly precipitation and the amount of Meiyu precipitation observed at weather station in Anhui province from 1979 to 2018 and their applicability were evaluated The results show that all three datasets can well describe the variation characteristics of seasonal precipitation in Anhui province, with most rainfall concentrated in summer, more rainfall in spring than in autumn, and least in winter.However, all the monthly precipitation is overestimated, with the maximum mean absolute percentage error (MAPE) found in December.In addition, precipitation in mountainous areas is significantly overestimated by the three datasets.Comparatively, the CMA-RA dataset agrees better with the observations than the other two datasets in describing the spatio-temporal distribution characteristics of the annual, summer and winter rainfall across the whole province and the Meiyu precipitation in regions along and south to Yangtze River.In general, the CMFD well captures the interannual variations of the precipitation on all timescales, but is rather poor in depicting their spatial distributions.However, it performs slightly better in describing the spatial-temporal characteristics of precipitation in spring and autumn and the interannual variation characteristics of Meiyu precipitation.As for the ERA5, the precipitation in Anhui province is systematically overestimated, with the bias being the largest among the three datasets, and it performs slightly better than other datasets in the precipitation in January.

Key words: Reanalysis data, CMA-RA, Precipitation

中图分类号: