1 |
常姝婷. 全球变暖背景下青藏高原夏季大气水汽特征及对区域气候的影响[D]. 兰州: 兰州大学, 2018.
|
2 |
路红亚, 杜军, 袁雷, 等. 1971—2012年珠穆朗玛峰地区极端降水事件变化研究[J]. 冰川冻土, 2014, 36 (3): 563- 572.
|
3 |
刘蕾, 陈茂钦, 蓝柳茹, 等. 桂北山区两次突发性大暴雨触发及维持机制分析[J]. 气象与环境学报, 2022, 38 (5): 15- 24.
|
4 |
刘达之, 姚聃, 梁旭东. 基于四维变分同化的"6·23"阜宁龙卷大涡模拟研究[J]. 气象与环境学报, 2022, 38 (6): 1- 9.
|
5 |
邢莉, 傅宗玫. 有机气溶胶对中国境内云凝结核数量的贡献研究[J]. 北京大学学报: 自然科学版, 2015, 51 (1): 13- 23.
|
6 |
张瑶, 吴昊, 张东梅, 等. 超大城市新粒子生成事件对云凝结核贡献分析[J]. 环境科学学报, 2022, 42 (9): 372- 383.
|
7 |
Huang R J , Zhang Y L , Bozzetti C , et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514 (7521): 218- 222.
doi: 10.1038/nature13774
|
8 |
Dao X , Lin Y C , Cao F , et al. Introduction to the national aerosol chemical composition monitoring network of China: objectives, current status, and outlook[J]. Bulletin of the American Meteorological Society, 2019, 100 (12): ES337- ES351.
doi: 10.1175/BAMS-D-18-0325.1
|
9 |
Geng G N , Zhang Q , Tong D , et al. Chemical composition of ambient PM2.5 over China and relationship to precursor emissions during 2005-2012[J]. Atmospheric Chemistry and Physics, 2017, 17 (14): 9187- 9203.
doi: 10.5194/acp-17-9187-2017
|
10 |
Liu S G , Geng G N , Xiao Q Y , et al. Tracking daily concentrations of PM2.5 chemical composition in China since 2000[J]. Environmental Science & Technology, 2022, 56 (22): 16517- 16527.
|
11 |
Bao M Y , Zhang Y L , Cao F , et al. Highly time-resolved characterization of carbonaceous aerosols using a two-wavelength Sunset thermal-optical carbon analyzer[J]. Atmospheric Measurement Techniques, 2021, 14 (6): 4053- 4068.
doi: 10.5194/amt-14-4053-2021
|
12 |
Yu M Y , Zhang Y L , Xie T , et al. Quantification of fossil and non-fossil sources to the reduction of carbonaceous aerosols in the Yangtze River Delta, China: insights from radiocarbon analysis during 2014-2019[J]. Atmospheric Environment, 2023, 292, 119421.
doi: 10.1016/j.atmosenv.2022.119421
|
13 |
Miyakawa T , Kanaya Y , Komazaki Y , et al. Intercomparison between a single particle soot photometer and evolved gas analysis in an industrial area in Japan: implications for the consistency of soot aerosol mass concentration measurements[J]. Atmospheric Environment, 2016, 127, 14- 21.
doi: 10.1016/j.atmosenv.2015.12.018
|
14 |
Hong Y H , Cao F , Fan M Y , et al. Impacts of chemical degradation of levoglucosan on quantifying biomass burning contribution to carbonaceous aerosols: a case study in Northeast China[J]. Science of the Total Environment, 2022, 819, 152007.
doi: 10.1016/j.scitotenv.2021.152007
|
15 |
姜建芳, 侯丽丽, 齐梦溪, 等. 天津市采暖季PM2.5中碳组分污染特征及来源分析[J]. 生态环境学报, 2020, 29 (6): 1181- 1188.
|
16 |
黄炯丽, 陈志明, 莫招育, 等. 广西玉林市大气PM10和PM2.5中有机碳和元素碳污染特征分析[J]. 环境科学, 2018, 39 (1): 27- 37.
|
17 |
Shin J Y , Ro Y , Cha J W , et al. Assessing the applicability of random forest, stochastic gradient boosted model, and extreme learning machine methods to the quantitative precipitation estimation of the radar data: a case study to gwangdeoksan radar, South Korea, in 2018[J]. Advances in Meteorology, 2019, 2019, 6542410.
|
18 |
Li Q L , Zhu Q Y , Xu M W , et al. Estimating the impact of COVID-19 on the PM2.5 levels in China with a satellite-driven machine learning model[J]. Remote Sensing, 2021, 13 (7): 1351.
doi: 10.3390/rs13071351
|
19 |
Grange S K , Carslaw D C . Using meteorological normalisation to detect interventions in air quality time series[J]. Science of the Total Environment, 2019, 653, 578- 588.
doi: 10.1016/j.scitotenv.2018.10.344
|
20 |
Grange S K , Carslaw D C , Lewis A C , et al. Random forest meteorological normalisation models for Swiss PM10 trend analysis[J]. Atmospheric Chemistry and Physics, 2018, 18 (9): 6223- 6239.
doi: 10.5194/acp-18-6223-2018
|
21 |
Grange S K , Uzu G , Weber S , et al. Linking Switzerland's PM10 and PM2.5 oxidative potential (OP) with emission sources[J]. Atmospheric Chemistry and Physics, 2022, 22 (10): 7029- 7050.
doi: 10.5194/acp-22-7029-2022
|
22 |
Lovric M , Pavlovic K , Vukovic M , et al. Understanding the true effects of the COVID-19 lockdown on air pollution by means of machine learning[J]. Environmental Pollution, 2021, 274, 115900.
doi: 10.1016/j.envpol.2020.115900
|
23 |
Wright M N , Ziegler A . Ranger: a fast implementation of random forests for high dimensional data in C++ and R[J]. Journal of Statistical Software, 2017, 77 (1): 1- 17.
|
24 |
Liu F T, Ting K M, Zhou Z H. Isolation forest[C]//Proceedings of 2008 Eighth IEEE International Conference on Data Mining. Pisa: IEEE, 2008: 413-422.
|